

Where Ideas Become Reality

centers.pnw.edu/civs

METHODOLOGY

- Section-by-section, Step-by-step, Integration
- Validation & verification
- 3-D interactive multiple platforms (immersive VR environment, AR, PC, mobile, or web versions)

centers.pnw.edu/civs

Where Ideas Become Reality

3D SIMULATION AND VISUALIZATION OF BLAST FURNACE

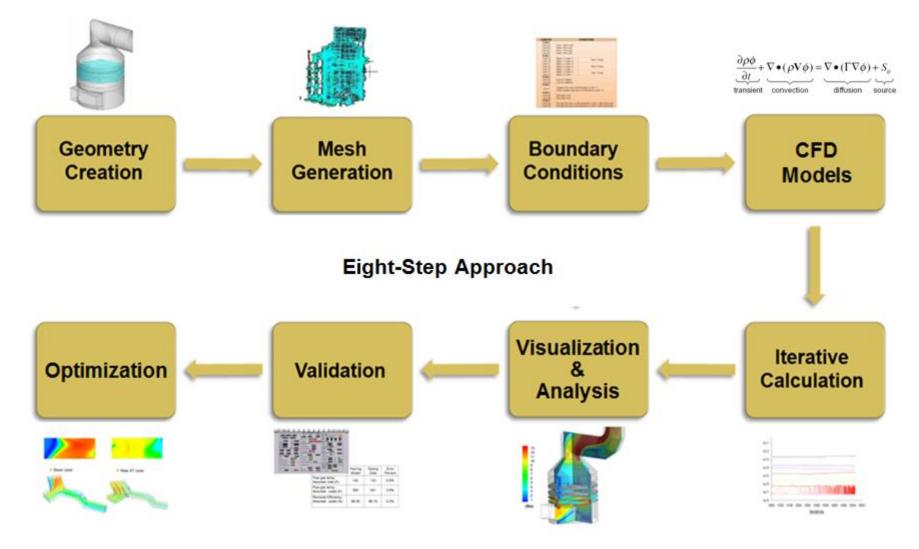
Issues:

- Furnace campaign life
- Energy efficiency
- **Pollutant emissions**
- Furnace downtime
- Training

> Outcome (since 2002):

- Virtual blast furnaces
- Copyrighted software packages
- Multimillion dollars savings
- Significant downtime reductions
- **Best Paper awards**

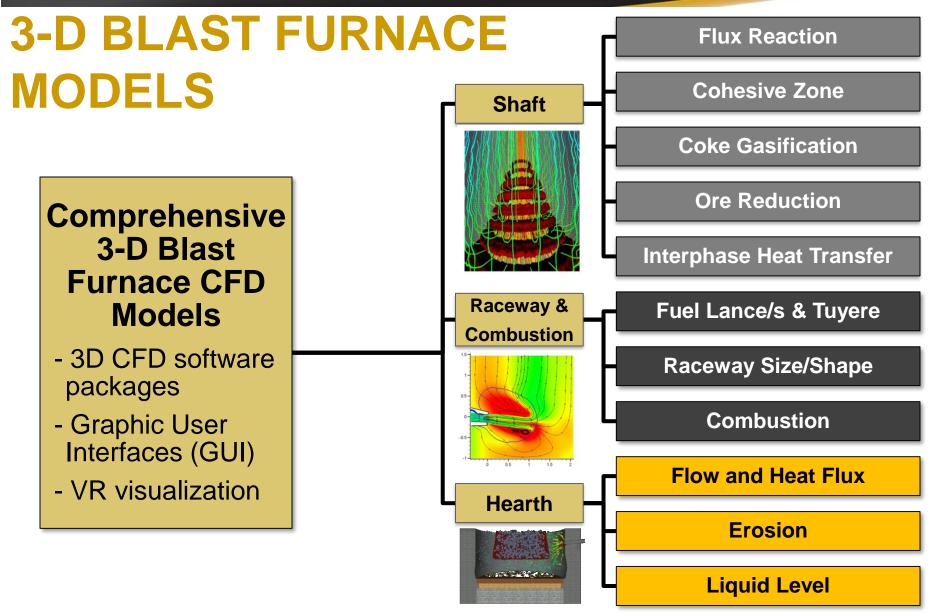
Collaborators: AISI, AIST, ArcelorMittal USA, ArcelorMittal Dofasco, AK Steel, Stelco, Tata Steel U.S. Steel, and Union Gas



centers.pnw.edu/civs

Where Ideas Become Reality

COMPUTATIONAL FLUID DYNAMICS (CFD)



centers.pnw.edu/civs

Where Ideas Become Reality

centers.pnw.edu/civs

BLAST FURNACE CFD MODELS

Shaft Model:

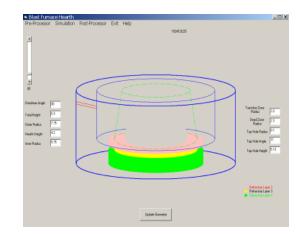
- Burden distribution
- Chemical reactions
- Iterative method for cohesive zone shape and location
- Iterative method for coke rate

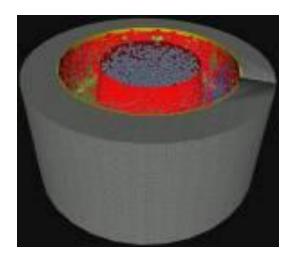
PCI-Raceway Model :

- Multiphase reaction turbulent flow
- Iterative method for raceway shape
- Coal combustion (devolatilization, surface combustion) •
- Coke combustion (kinetic/diffusion model)
- Gas combustion (eddy dissipation model)
- P1 radiation model

Hearth Model:

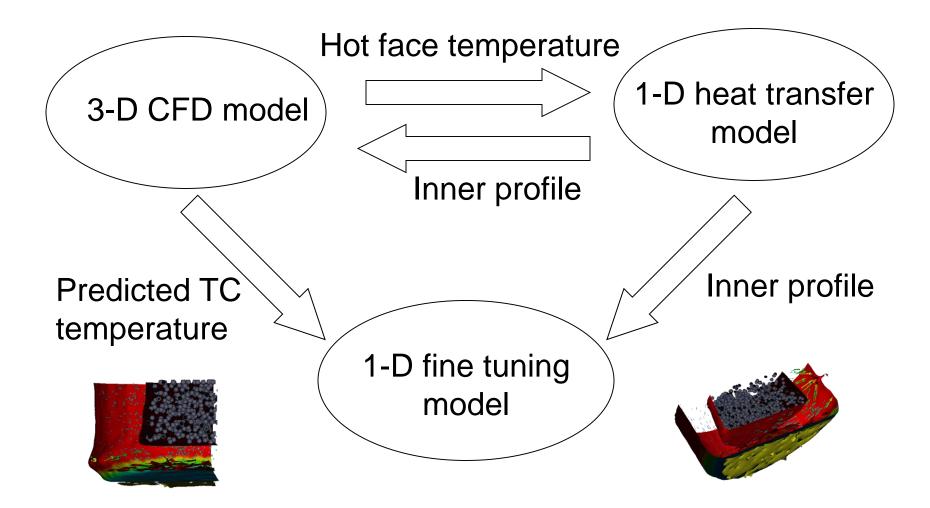
- Coupled CFD with inverse Heat Transfer for Skull/Erosion Profile
- Conjugate heat transfer
- Real geometry (skulls, refractories, ram, shell...)
- Variable properties
- Liquid Level


centers.pnw.edu/civs


Where Ideas Become Reality

CFD HEARTH MODEL

- Features
 - **GUI** preprocessor
 - 3-D
 - Real geometry including deadman, blowing layer, skulls, refractories, ram, and shell
 - Velocity, pressure, species, hot metal and refectory temperatures
 - Inner profile
 - Liquid level and tapping
 - VR visualization



Where Ideas Become Reality

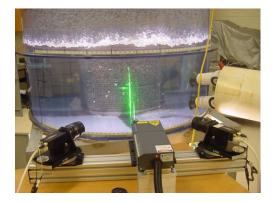
centers.pnw.edu/civs

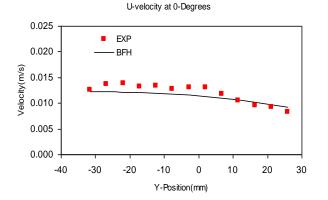
METHODOLOGY

CENTER FOR INNOVATION VISUALIZATION & SIMU

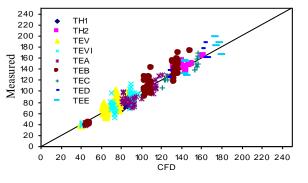
VALIDATIONS

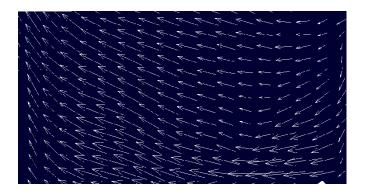
- CFD results were compared with the following measured data:
 - Velocity and streamlines 1/10th scale water model at PUC
 - Species distribution in a 1/50th scale warm water model at PUWL
 - Refractory temperatures of the Mittal No. 7 blast • furnace (both old and new geometry)
 - Refractory temperatures of the US Steel No. 13 blast furnace

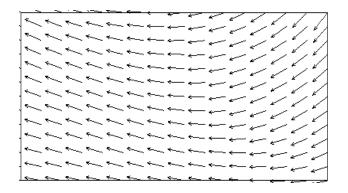

S CENTER FOR INNOVATION THROUGH VISUALIZATION & SIMULATION

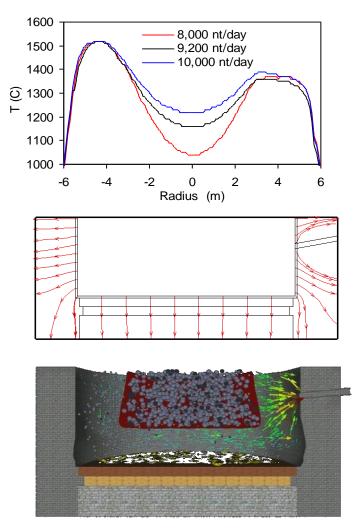

centers.pnw.edu/civs

Where Ideas Become Reality




EXAMPLES OF VALIDATIONS



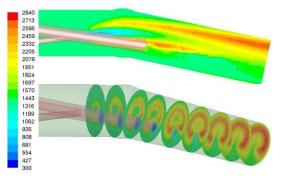

centers.pnw.edu/civs

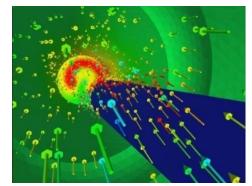
USE OF CFD HEARTH MODEL

- Visualize flow patterns
- Predict inner profiles
- Design monitoring systems for refractory temperatures
- Investigate the impacts of operating and geometrical conditions on the campaign life of hearth
- Troubleshooting
- Design new furnaces

centers.pnw.edu/civs

Where Ideas Become Reality

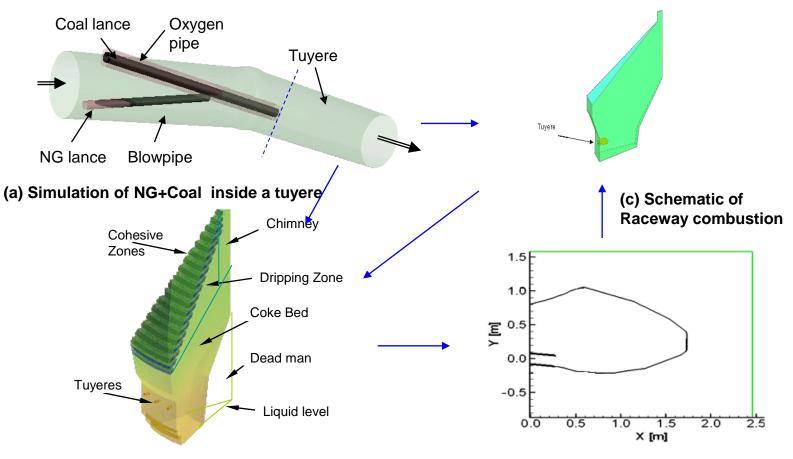

BF RACEWAY CFD MODEL


CFD Raceway Models:

- Lance
- Raceway
- Combustion

Recommendations :

- Strategies for high PCI & CH4 rate
- Guidance for lance design and protection
- Solutions for troubleshooting
- Evaluation of new alternative fuel injections


S CENTER FOR INNOVATION THROUGH VISUALIZATION & SIMULATION

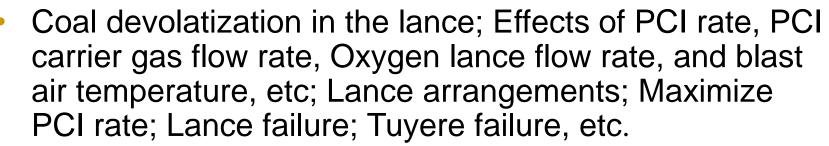
Where Ideas Become Reality

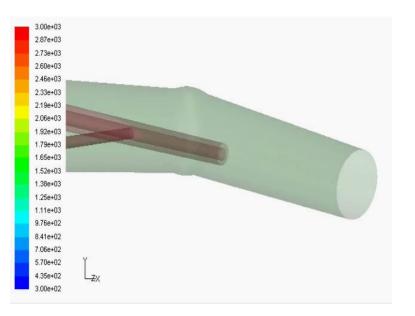
centers.pnw.edu/civs

METHODOLOGY

(b) Obtain the raceway shape and size

CIVS CENTER FOR INNOVATION THROUGH **VISUALIZATION & SIMULATION**


centers.pnw.edu/civs

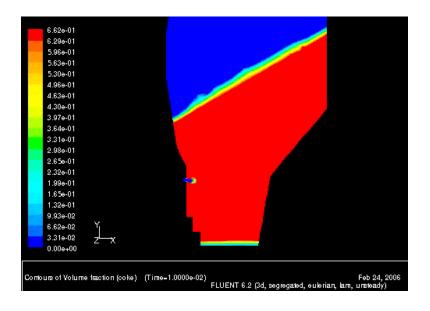

Where Ideas Become Reality

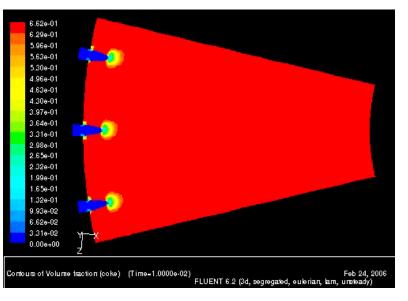
LANCE AND TUYERE

- Fluent is used
 - 3-dimensional, Turbulent
 - Heat transfer
 - Multiphase flow
 - **Multispecies reactions**
 - Coal combustion
 - Natural gas co-injection
 - Oxygen enrichment
- Cases studied for

S CENTER FOR INNOVATION THROUGH VISUALIZATION & SIMULATION

centers.pnw.edu/civs


Where Ideas Become Reality



RACEWAY FORMATION KINETICS

Fluent is used

- 3-D transient gas-particle flow simulations
- Eulerian approach
- A multi-fluid granular model is used to describe the flow behavior of the fluid-solid mixture.

CENTER FOR INNOVATION T VISUALIZATION & SIMULAT ROUGH

centers.pnw.edu/civs

Where Ideas Become Reality

RACEWAY COMBUSTION Main Features of In-House CFD Code

- 3-dimensional
- Turbulent
- Multiphase flow (gas, pulverized coal, and coke particles)
- Heat transfer
- Multispecies reactions
- Coke combustion
- Coal combustion (moisture evaporation, volatilization, Char combustion)
- Natural gas co-injection
- Coke combustion rate
- Natural gas combustion rate

S CENTER FOR INNOVATION THROUGH VISUALIZATION & SIMULATION

centers.pnw.edu/civs

Where Ideas Become Reality

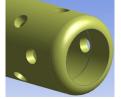
* "Raceway design for the Innovative Blast Furnace", Hiroshi Nogami, Hideyki Yamaoka, Kouji Takayani, ISIJ 2004.

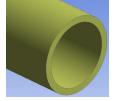
centers.pnw.edu/civs

Where Ideas Become Reality

Example: High Rate Natural Gas Injection in Blast Furnace


Issue:


Unstable operation at both full and low production with high natural gas injection.


Outcomes:

- Established good practice of natural gas lance selection to better suit the furnace production rate.
- Stable and controllable operation.
- Eliminated production loss caused by high blast pressure at full production rate.

Fast Lance

Bored Lance

Straight Lance

Collaborators: John D'Alessio, U.S. Steel Canada

PU

CENTER FOR INNOVATION THROUGH VISUALIZATION & SIMULATION

centers.pnw.edu/civs

20000

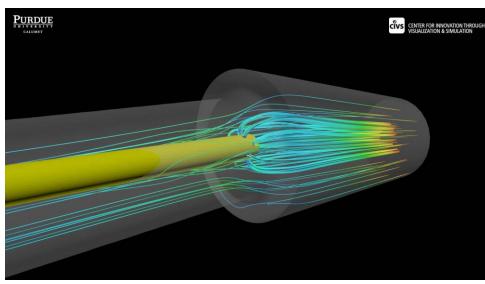
Low Production

Increased

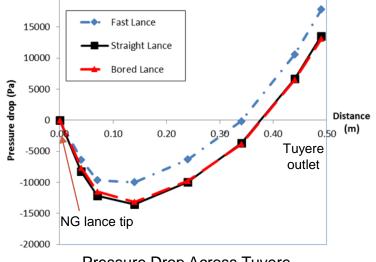
combustion provides higher tuyere velocity

Helps to avoid

the practice of tuyere plugging


Tuyere velocity

too low due to


reduced combustion

Suitable

Unsuitable

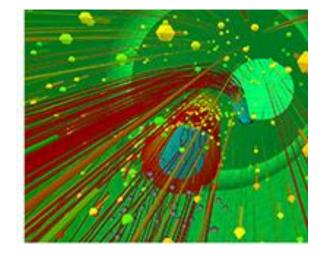
Pressure Drop Across Tuyere

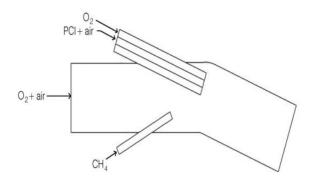
	CIVS CENTER FOR INNOVATION THROUGH		High Production
	Fa	ast Lance	 Unsuitable Pressure drop too high for stable operation Plant cannot supply enough wind to maintain high production
Straight Lance	В	traight or ored ance	 Suitable Plant can supply enough wind due to the lower pressure drop

CENTER FOR INNOVATION T

centers.pnw.edu/civs

Where Ideas Become Reality


Example: Troubleshooting Blast Furnace **PCI** Lance


Issues:

- Lance failures
- Lance performance

Outcomes:

- Significant downtime avoidance by half due to fewer lance failures
- A coke rate savings of 15 lbs./NT hot metal was realized
- \$8.5 million per year cost savings

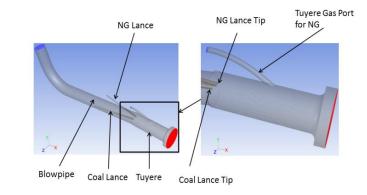
cïvs

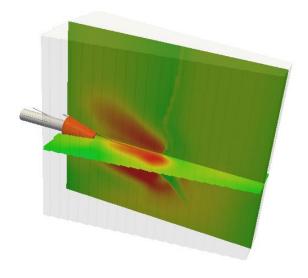
CENTER FOR INNOVATION THROUGH

centers.pnw.edu/civs

Where Ideas Become Reality

Example: ArcelorMittal Dofasco Case

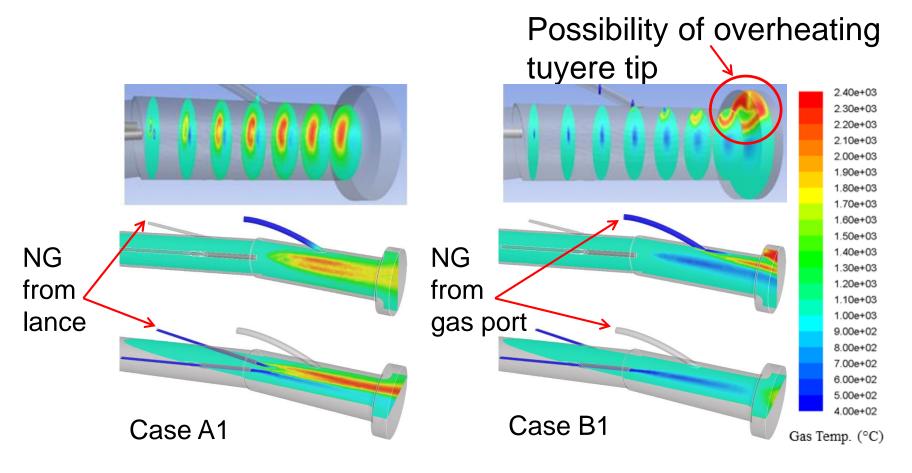

Objective:


- To increase coal combustion efficiency
- To optimize NG injection location and rate

> Outcomes:

- Parametric effects on coal combustion efficiency with 11 cases
- Recommended NG injection configurations and injection rate

Collaborator: Dave Pomeroy, ArcelorMittal Dofasco



centers.pnw.edu/civs

Where Ideas Become Reality

Effects of NG Injection Location on Gas Temperature

CIVS CENTER FOR INNOVATION THROUGH VISUALIZATION & SIMULATION

centers.pnw.edu/civs

Where Ideas Become Reality

Effects of NG Injection Location and Rate on Coal Burnout

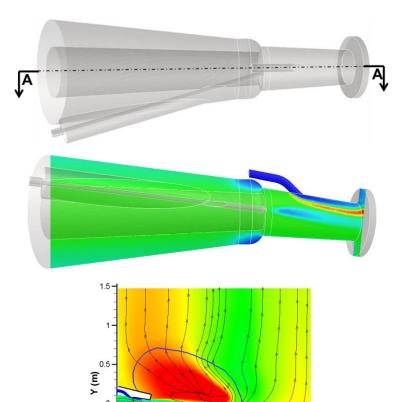
Case	NG from Lance	NG from Gas Port	Coal Combustion Efficiency		
A1	R _{NG}	0	80.5%		
A2	1.5×R _{NG}	0	85.0%		
A3	2.0×R _{NG}	0	90.1%		
B1	0	R _{NG}	78.9%		
B2	0	1.5×R _{NG}	78.6%		
B3	0	2.0× R _{NG}	79.8%		
Note: Coal Combustion Efficiency is the total coal burnout percentage in raceway					

- The coal combustion efficiency increases when the NG is injected from the lance
- As rate of NG from lance increase, the total coal burnout increases

centers.pnw.edu/civs

-0.5

Example: Co-Injection of NG and PCI


Issue:

- Need efficient replacement rate of coke by PC and NG
- Improve combustion efficiency of injected fuels

Outcome:

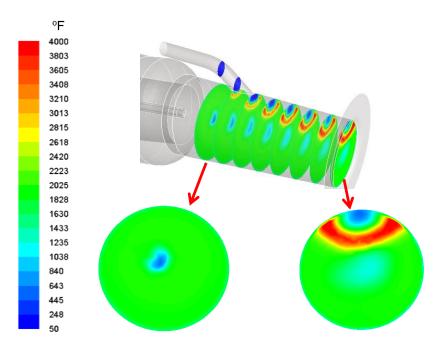
- Identified improvements in combustion efficiency
- Possible enhancement of production by 2.5% if implemented

Collaborators: Stuart Street, AK STEEL (Former SEVERSTAL, Dearborn)

0.5

X (m)

S CENTER FOR INNOVATION THROUGH VISUALIZATION & SIMULATION


centers.pnw.edu/civs

Where Ideas Become Reality

Results & Discussion

- Unexpected explanation for industrial failures
 - NG combustion in tuyere near upper wall
 - High thermal stress and wear

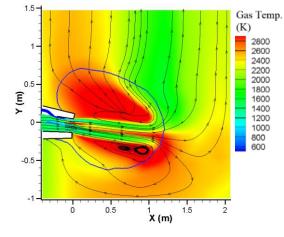
CIVS CENTER FOR INNOVATION THROUGH **VISUALIZATION & SIMULATION**

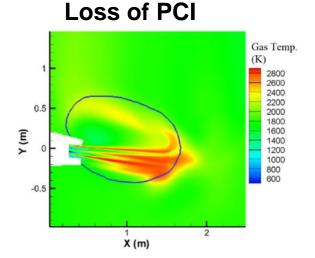
centers.pnw.edu/civs

Where Ideas Become Reality

Example: Testing Unplanned Loss of PCI

ssue:

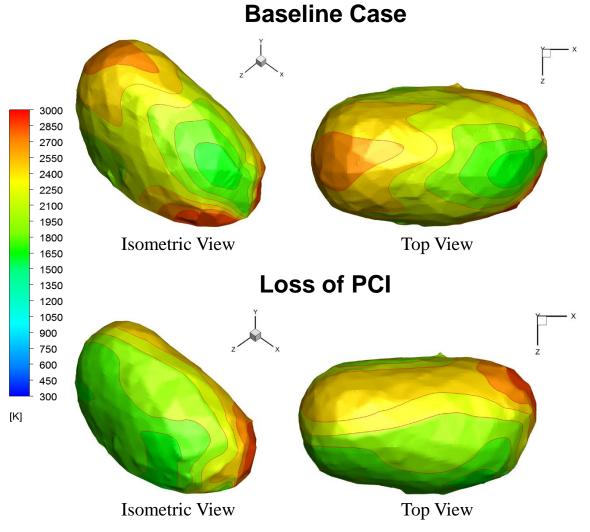

- Co-injection blast furnace loses PCI capability for one of a number of reasons
- To maintain production, pure NG operation is required


> Outcome:

- Examined the impacts of a switch to pure NGI
- Potential avenues for higher NGI rates highlighted (preheating)

Collaborators: Stuart Street, AK STEEL (Former SEVERSTAL, Dearborn)

Standard Operation


centers.pnw.edu/civs

Where Ideas Become Reality

Results & Discussion

- Resulting RAFT is **11%** lower than baseline, at 1,994 K
 - Temperature drop due to abundance of H_2O and CO_2
- Raceway gas temperature distribution is also dramatically different
- Highest temperatures correspond to locations of NG combustion
- Little recirculation of combustion products within raceway

Impacts of PCI Loss and Pure NGI

- Nearly all injected fuel is consumed within raceway
- While CH₄ combustion provides heat, byproducts of CH₄ combustion result in endothermic reactions
- These results shine light on the quenching effect observed in industrial furnaces at high NG rates
- Limiting factors for furnace stability include condensation in BF (impacted by O₂ in blast) and RAFT for furnace heat
- O₂ can increase heat, but drops top temp. Max NGI rate is typically near 150 kg/mthm
- Potential to address this problem by pre-heating injected natural gas to maintain RAFT without impacting top temperature

centers.pnw.edu/civs

Example: Preheating Natural Gas

Issues:

- High NG injection to replace coke is desired to improve energy efficiency and emissions
- Furnace unstable at high NG rates due to quenching effects on raceway flame T

Potential Solution:

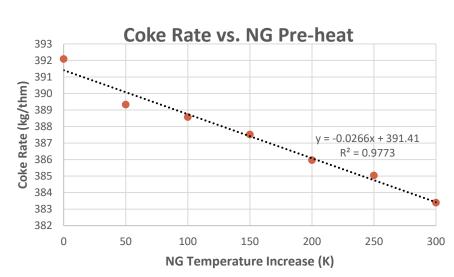
- Preheating NG may:
 - Increase sensible heat input
 - Increase NG injection velocity (enhanced \checkmark mixing/combustion)
 - Counter reduction in raceway flame temperature

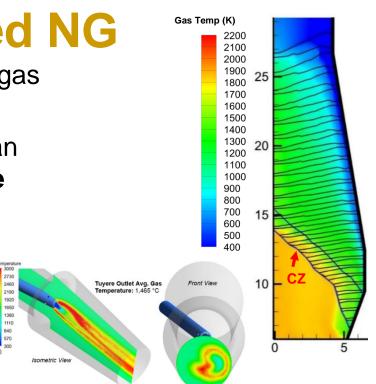
> Research:

Use CFD to determine effects of NG preheating on coke rate and energy efficiency

CENTER FOR INNOVATION THROUGH VISUALIZATION & SIMULATION

centers.pnw.edu/civs


Where Ideas Become Reality


300

Effects of Pre-heated NG

- Blast furnace coke rate decreases as natural gas temperature is increased
- Preheating natural gas from 300 K to 600K can provide a drop of 8.7 kg/thm in furnace coke consumption (2.3%)
- Assuming a coke price of \$275/ton, for a BF operating at 6,500 thm/day, ~\$5.88M will be saved annually

NG T	Coke Rate (kg/thm)	Coke Rate ∆	% change
300 K (base)	392.1	0 kg/thm	0%
350 K	389.3	- 2.8 kg/thm	0.7%
400 K	388.6	- 3.5 kg/thm	0.9%
450 K	387.5	- 4.6 kg/thm	1.2%
500 K	386.0	- 6.1 k/thm	1.6%
550 K	385.0	- 7.1 kg/thm	1.8%
600 K	383.4	- 8.7 kg/thm	2.3 %

Baseline Case

CENTER FOR INNOVATION VISUALIZATION & SIMUL

centers.pnw.edu/civs

Example: HPC4Mfg

- Sponsors: DOE/AMO, LLNL
- Goals:
 - Significantly reduce computational time
 - Improve resolutions
 - Develop integrated blast furnace simulators for process control, optimization, design, troubleshooting, and workforce training
- Results:
 - Total of ~1000 cases run to analyze various operating conditions
 - Significant reduction in amount of time required to run large scale studies using capabilities of HPC
 - Time to run on HPC: 144 hours (1 week)
 - Time to run on PC: 6,048 hours (9 months)

centers.pnw.edu/civs

BF 'Simulator' – Data Analytics

- New methodology for CFD data analytics
- Using CFD results from HPC parametric studies, develop interactive application to predict BF operation outputs
 - Functions at any data point inside data range
 - Will extrapolate for points outside range
- \succ Predict TGF, FTA, coke rate, gas utilization, and shaft ΔP based on input conditions
 - Accuracy matching CFD models (in ideal operation) w/o needing a new run for each condition

Future Goals:

- Accessible from SMSVC website
- Ability to import result sets from **any BF**
- Addt'l variables could easily be added to expand the .CSV database

tric: 6644.18 Pa: 124175 Temperature: 484.574 oke Rate: 384.724 inter integar to close_

BF 'Simulator' – Data Analytics

PURDUE NIVERSITY NORTHWEST

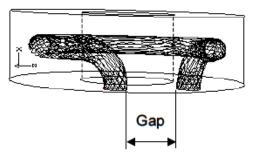
- New methodology for CFD data analytics
- Using CFD results from HPC parametric studies, develop interactive application to predict BF operation outputs
 - Functions at any data point inside data range
 - Will extrapolate for points outside range
- Predict TGF, FTA, coke rate, gas utilization, and shaft ΔP based on input conditions
 - Accuracy matching CFD models (in ideal operation) w/o needing a new run for each condition

Future Goals:

- Accessible from SMSVC website
- Ability to import result sets from any BF
- Addt'l variables could easily be added to expand the .CSV database

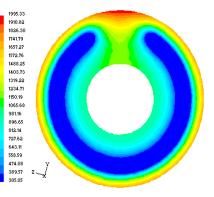
centers.pnw.edu/civs

Where Ideas Become Reality


Example: Blast Furnace Tuyere Nose

Issues:

- Tuyere failures
- Downtime and maintenance cost


> Outcomes:

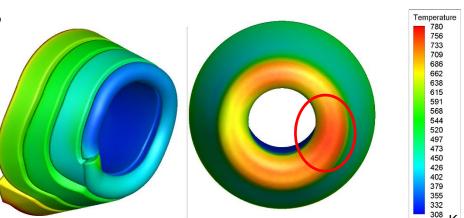
- Identified insufficient cooling in between the nose inlet and the outlet pipe causing tuyere failures
- 2005 AISI Institute Medal Award

Collaborator: Yongfu Zhao, U.S. Steel Research

centers.pnw.edu/civs

Where Ideas Become Reality

Example: Tuyere Failure Analysis


Issue:

Unknown reason of tuyere failure

Outcomes:

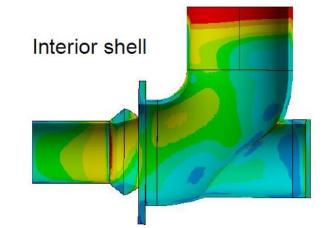
- Identified the cause of failures
 - Thickness at the tuyere tip is significant (The thicker, the higher the temperature at the tip surface.)
 - Water temperature and velocity are not critical

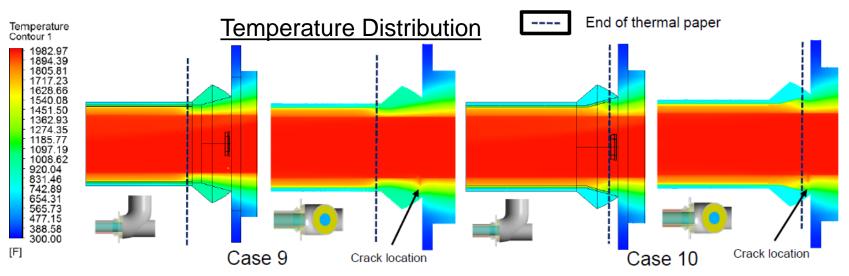
CIVS CENTER FOR INNOVATION THROUGH VISUALIZATION & SIMULATION

centers.pnw.edu/civs

Where Ideas Become Reality

Example: IH4 Blowpipe Redesign


Collaborator: Dale Goodloe. ArcelorMittal

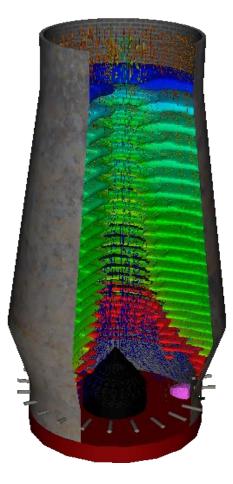

- Blowpipes having short life expectancy
- Refractory cracking, shell hot spots

Outcomes:

Issue:

- Length of thermal paper extended, reducing thermal stress
- Refractory changed to wall-cast, nearly doubling current strength

centers.pnw.edu/civs

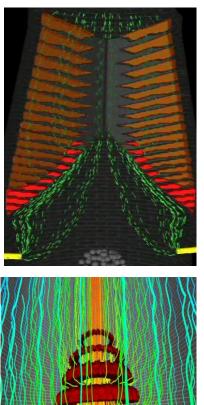

Where Ideas Become Reality

CFD SHAFT MODEL

Features of CFD Shaft Model

- GUI preprocessor
- 3-D
- Burden distribution
 - Falling curve
 - Stock line profile
 - Burden descending
 - Mix layer
- Velocity, pressure, species, gas and burden temperature
- Chemical Reaction (Total 9 reactions) considered)
 - Shrinkage un-reacted core model
 - Grain model

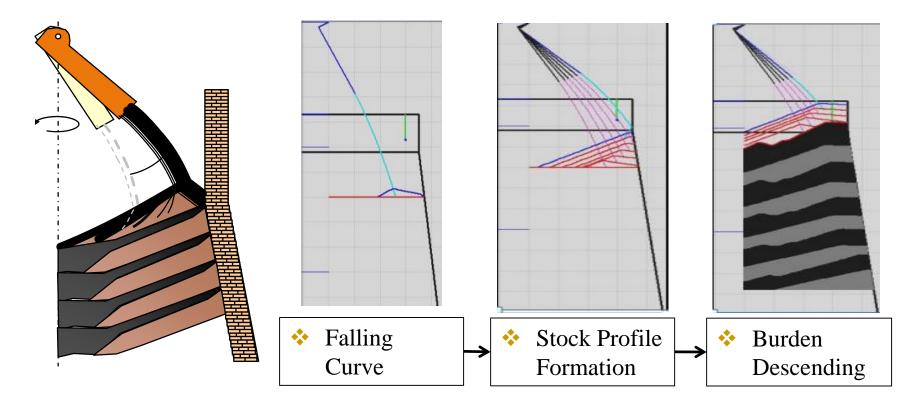
centers.pnw.edu/civs


Where Ideas Become Reality

CFD SHAFT MODEL

Features of CFD Shaft Model

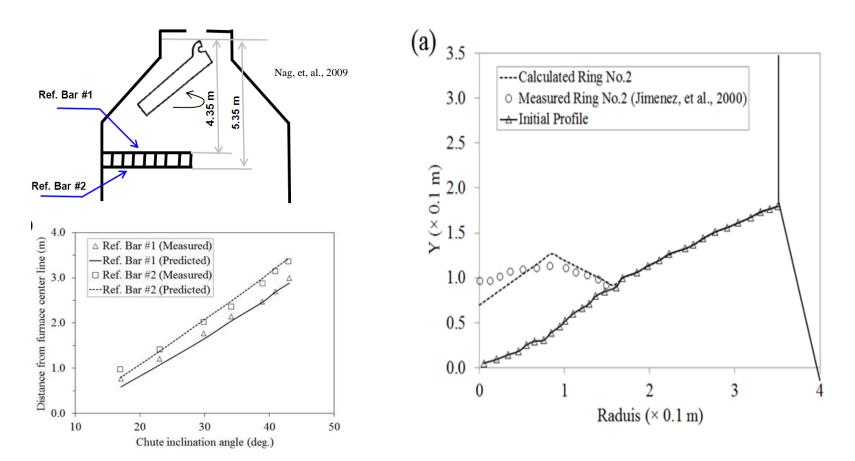
- Cohesive zone shape and location
 - Uniform liquidus temperature
 - Non-uniform liquidus temperature (as a function of burden composition)
- Reduction degree, Coke rate
- CO and H₂ Gas utilization
- Coal ash distribution in shaft
- VR visualization


centers.pnw.edu/civs

Where Ideas Become Reality

BURDEN DISTRIBUTION MODEL

Predict burden distribution from a given charging matrix \succ


centers.pnw.edu/civs

Where Ideas Become Reality

VALIDATION

Measurement of the impact location for different chute angle Measurement of first layer profile

CENTER FOR INNOVATION THE VISUALIZATION & SIMULATION OUGH

centers.pnw.edu/civs

Where Ideas Become Reality

CHEMICAL REACTIONS

- Indirection reduction by carbon monoxide : $3Fe_2O_3(s) + CO(g) \rightarrow 2Fe_3O_4(s) + CO_2(g)$ $Fe_3O_4(s) + CO(g) \rightarrow 3FeO(s) + CO_2(g)$ FeO (s) + CO (g) \rightarrow Fe (s) + CO₂ (g)
- * Indirection reduction by hydrogen: $3Fe_2O_3(s) + H_2(g) \rightarrow 2Fe_3O_4(s) + H_2O(g)$ $Fe_3O_4(s) + H_2(g) \rightarrow 3FeO(s) + H_2O(g)$ FeO (s) + H₂ (g) \rightarrow Fe (s) + H₂O (g)
- \diamond Decomposition of flux:

 $MeCO_3$ (s) \rightarrow MeO (s) + CO_2 (g), Me=Ca, Mg

- \diamond Coke gasification:
 - $C(s) + CO_2(g) \rightarrow 2CO(g)$ $C(s) + H_2O(g) \rightarrow CO(g) + H_2(g)$
- * Water gas shift reaction:

 $CO(g) + H_2O(g) \leftrightarrow CO_2(g) + H_2(g)$

٠ **Direct Reduction:**

 $FeO(l) + C(s) \rightarrow Fe(l) + CO(g)$

Gas Solid Reaction Model

- Un-reacted Core Model
- Grain Model
- Kinetic Model

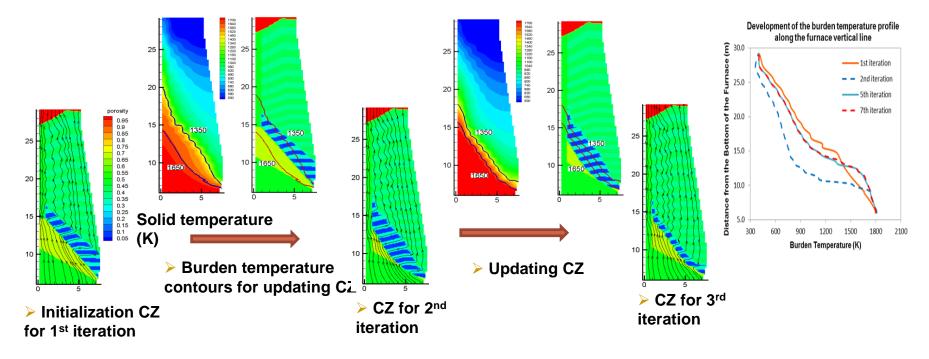
Un-reacted Core Model

Kinetic Diffusion Model

Assume Equilibrium When T>900 °C

Kinetic Model

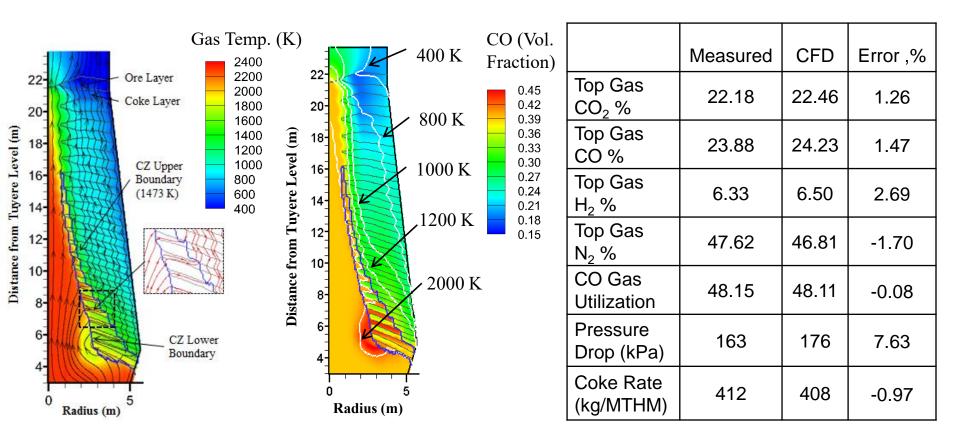
centers.pnw.edu/civs


Where Ideas Become Reality

COHESIVE ZONE ESTIMATION

Iterative Methodology

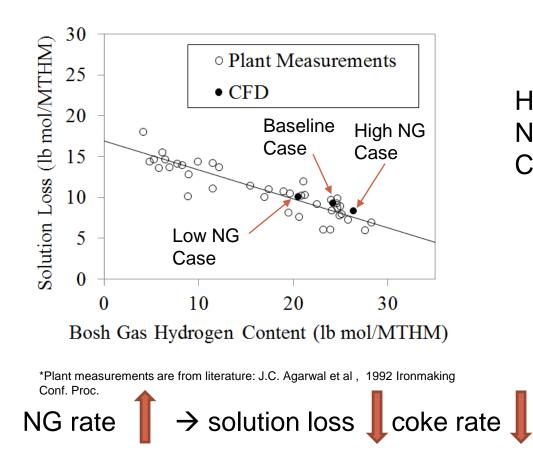
- Step 1: Assume a cohesive zone (CZ) to initialize the burden structure for CFD simulation.
- Step 2: Obtain the burden temperature distribution using the converged CFD results.
- Step 3: Determine the new CZ using isothermal lines from CFD results with the softening temperature of iron ore (upper boundary) and the liquidus temperature (lower boundary).
- Step 4: Feed back the updated CZ to update the burden structure and conduct simulation.
- Step 5: Repeat the Step 2-4 until the shape of cohesive zone converge


S CENTER FOR INNOVATION THROUGH VISUALIZATION & SIMULATION

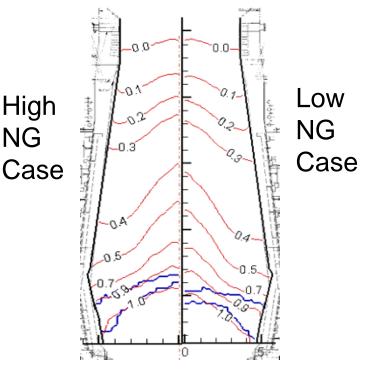
centers.pnw.edu/civs

VALIDATION

We appreciate USS for provide the measurements data for our validation.


centers.pnw.edu/civs

Where Ideas Become Reality

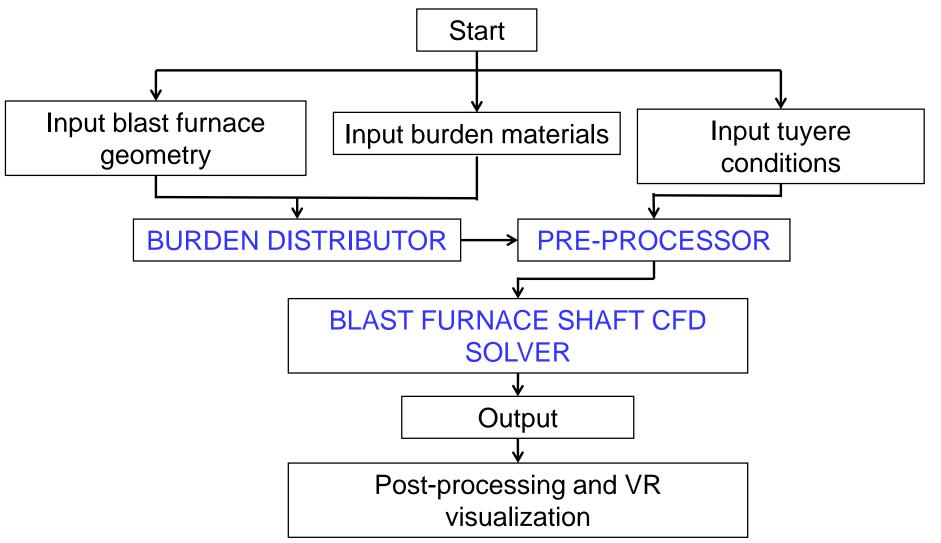


EFFECT OF NATURAL GAS RATE

Solution loss

Reduction degree

Case	Coke Rate		
High NG Case	411 kg/MTHM		
Low NG Case	423 kg/MTHM		


centers.pnw.edu/civs

Where Ideas Become Reality

44

BLAST FURNACE SHAFT SIMULATOR (BFSS)

Zho

Ne Ex

S CENTER FOR INNOVATION THROUGH VISUALIZATION & SIMULATION

centers.pnw.edu/civs

Where Ideas Become Reality

45

BLAST FURNACE SHAFT SIMULATOR

File George Sta				Zoom In Zoom Out Fit	W 32.4792 H 32.4792 T 0 L-16.2396 Set/Refres
	ight H1(m): 2	diameter D1 (m): 9	Calculated Results	
Shaft hei	ight H2(m) : 13	diameter D2 (m): 13		r(m)= 13.67 AboveTuy(m)= 18.12 up
Belly hei	ight H3(m): 2	diameter D3 (m): 13	HFRQ3= 9.9(m)	Above-Burden Probe. 2(m) down
Bosh hei	ght H4(m): 2	diameter D4 (m): 11		Show
LowerBosh he	ight H5(m): 4	diameter D5 (m): 11		Points
Tuyere Level H	16(m) : 3	1			In-Burden Probe 5(m)
Throat H1	.E	1	Set BF Geometry	HFRQ2= 3.3(m)	Color Burden Ore
Shaft H2	a		Shaft angle a (deg): 81.25 Volume (m^3):	HFRQ1= 4.4(m)	Unit Conversion
	D.	2	Throat= 127.2 Shaft= 1249 Belly= 265.5	Above - Shaft Below - Raceway-Hearth	
Belly H3 Bosh H4		3	Bosh= 226.7 LBosh= 380.1 Total= 2248.6	5.4 m	Tuyere Level
Lower Bosh H		14 EH6		Click (Monitor) to start monitoring	

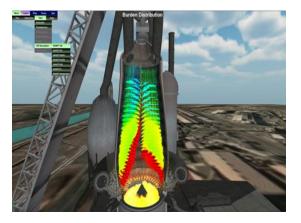
S CENTER FOR INNOVATION THROUGH VISUALIZATION & SIMULATION

centers.pnw.edu/civs

Where Ideas Become Reality

46

EFFECT OF BURDEN DISTRIBUTION


centers.pnw.edu/civs

Where Ideas Become Reality

VIRTUAL BLAST FURNACE

- Multiple versions of training package
 - PC, Web, Mobile
 - 3D TV
 - 3D Immersive Virtual Reality (VR)
 - Augmented Reality (AR)
- Taught in industrial training and short courses world wide
- \geq Used for problem solving for design, troubleshooting and optimization with multimillion savings and cost avoidance

centers.pnw.edu/civs

Where Ideas Become Reality

U.S. Steel Blast Furnace Ironmaking Academy Total 20 Participants

	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree
The VBF simulator was beneficial as a visual learning aid in this training course.	95%	5%	0%	0%	0%
The VBF simulator enables me to better visualize the blast furnace and its equipment in a way that is difficult for me to do with presentation slides or text alone.	85%	15%	0%	0%	0%
Training courses on other process (i.e., cokemaking, steelmaking, etc.) should develop similar simulations in the futures as a learning aid.	80%	20%	0%	0%	0%

"excellent training tool; great problem-solving capabilities"; "This interactive model helped me visualize the material flowing through the process. It was very helpful in understanding the flow"

centers.pnw.edu/civs

Where Ideas Become Reality

SUMMARY

- Comprehensive CFD modeling and visualization provide important tools for blast furnace process/product design, optimization and troubleshooting to address issues on energy, environment, productivity, quality, and training
- The integration of CFD simulation and VR visualization provides innovative ways to create virtual worlds of real problems for cost-effective solutions

CIVS CENTER FOR INNOVATI VISUALIZATION & SI

centers.pnw.edu/civs

Acknowledgements

- U.S. Dept. of Energy Advanced Manufacturing Office
- U.S. Dept. of Energy HPC4Mfg Program
- Indiana 21st Century Research and Technology Fund
- Association of Iron and Steel Technology
- American Iron and Steel Institute
- Additional thanks to:
 - Steel Manufacturing Simulation and Visualization Consortium members
 - All industrial collaborators
 - CIVS staff & students

centers.pnw.edu/civs www.steelconsortium.org