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Abstract: Parameter forcing is the central idea behind a method to approximate the p-value for an
interest parameter in a Generalized Linear Model [12]. The method involves a numerical procedure
which constructs both a one-dimensional test statistic curve and a distribution along this curve.

1 Introduction

The likelihood function plays a large part in statistical inference [4],[11]. Consider the case when
the parameter space can be partitioned into two types of parameters,

β = (β1, . . ., βr−1, βr)
= (λ1, . . ., λr−1, ψ)
= (λ, ψ)

where λ is a vector of nuisance parameters and ψ is a scalar interest parameter. If it is possible to
factor the likelihood into

L(β; y) = L1(λ, t1)L2(ψ; t2)

where t1 and t2 are observed values of the statistics T1 and T2, it seems reasonable to use L2(ψ; t2)
for inference about the interest parameter, ψ.

An appropriate factorization of a likelihood can often be achieved using some combination of
sufficient and ancillary statistics. For example, it would be ideal to find a sufficient statistic, T, for
the nuisance parameters, λ, such that

L(β; y) = L1(λ; t)L2(ψ; y|t)

or an ancillary statistic, T, for the nuisance parameters, λ, such that

L(β; y) = L1(ψ; t)L2(λ; y|t).

Then, the conditional likelihood, L2(ψ; y|t), in the first case, or the marginal likelihood, L1(ψ; t), in
the second case, could be used for inference purposes [1],[7],[10],[13].

A one–dimensional statistic, which displays ancillary–like properties for the nuisance parameters,
along with a possible approximate distribution for this statistic, is described in this paper. The main
idea behind this statistic and its distribution is called the parameter forcing method and, accordingly,
the statistic is called the parameter forcing statistic and the distribution along this curve is called
the parameter forcing distribution. Although applicable to more general problems, the parameter
forcing method is utilized, in this paper, for a generalized version of the Generalized Linear Model.
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A numerical procedure is employed to carry out the parameter forcing method because the system
of differential equations used to describe the parameter forcing statistic and the formula used to
approximate the parameter forcing distribution are, in general, too complicated to solve by analytical
means.

The parameter forcing statistic is analogous to the r∗ statistic, [3], and the parameter forcing
distribution is analogous to the p∗ formula, [2].

This paper begins with a discussion of the system of differential equations that describe the
parameter forcing statistic in the context of a Generalized Linear Model. The next section describes
the parameter forcing distribution. The last section describes results obtained from the parameter
forcing numerical procedure.

2 Parameter Forcing Statistic For Generalized Linear Model

After describing the version of the Generalized Linear Model used for this analysis, the system of
differential equations that define the parameter forcing statistic is identified and explained.

Generalized Linear Model and Inference For Interest Parameter Consider a sequence of
independent random variables (y1, . . . , yn),

yi ∼ Fi(yi; θi, ξi), i = 1, . . . , n,

where each distribution function Fi is continuous and either stochastically increasing or decreasing
in the parameter θi. The known Fi distribution functions are said to be underlying or process
distribution functions. The parameters θi ∈ <, i = 1, . . ., n are unknown interest distribution function
parameters. The parameters ξi = (ξi1, . . ., ξ

i
p) ∈ <p, i = 1, . . ., n are unknown nuisance distribution

function parameters.
The version of the Generalized Linear Model discussed in this paper consists of three components.

The random component consists of a sequence of independent random variables (y1, . . ., yn),

yi ∼ Fi(yi; θi, ξi), i = 1, . . ., n,

where each distribution Fi is continuous and either stochastically increasing or decreasing in the
parameter θi. The systematic component is given by, η1

...
ηn

 =

 x11 . . . x1r
...

. . .
...

xn1 . . . xnr


β1

...
βr

 , r ≤ n,

or, in short, η = Xβ. Finally, the inverse link functions are given by,

θi = g(ηi), i = 1, . . . , n,

where g is a monotonic differentiable function.
The problem dealt with in this paper is: given an observed set of the random variables,

(y0
1 , . . ., y

0
n), as specified in detail above, and in the presence of the unknown nuisance test parame-

ters, (β1, . . ., βr−1) = (λ1, . . ., λr−1), test an interest parameter βr = ψ by calculating an appropriate
p–value.

Parameter Forcing Statistic There are two pieces to the system of differential equations that
describe the parameter forcing statistic. One is called the nuisance–free system and the other is
called the ancillary–direction system. Although both possess ancillary–like properties, the latter
system also possesses a “parameter–forcing” property.



Notation Capital bold letters are matrices. For example, A is a matrix. The matrix A(r−1)×n is a
(r − 1)×n matrix.

The notation dyi, i = 1, . . ., n is used to describe the one–forms (or 1–forms) of the variables; dθi,
i = 1, . . ., n are one–forms for the parameters. A (column) n–vector of variable one-forms is given by
dy = (dy1, . . ., dyn)t. A (column) n–vector of parameter one-forms is given by dβ = (dβ1, . . ., dβn)t.
The one–form of a variable, say, represents, roughly speaking, the incremental change in the variable.

The notation used to describe the derivative of the log–likelihood ˜̀ =
∑n
i=1 `i with respect to

the parameter λ = (λ1, . . ., λr−1) is given by ˜̀
λ;

.
Since the systematic component of the Generalized Linear Model is given by η = Xβ, with

inverse link functions, θi = g(ηi), i = 1, . . . , n, the following notation, with regard to constrained
maximum likelihood estimators is used,

ηi(β̂ψ) = ηi(λ̂ψ, ψ),

= ηi(λ̂
ψ
1 , . . ., λ̂

ψ
r−1, ψ)

= xi1λ̂
ψ
1 + . . .+ xi,r−1λ̂

ψ
r−1 + xi,rψ

= η̂ψi , i = 1, . . ., n,

and,
η̂ψ = (η̂ψ1 , . . ., η̂

ψ
n ),

and also,
θ̂ψ = (g(η̂ψ1 ), . . ., g(η̂ψn )) = (θ̂ψ1 , . . ., θ̂

ψ
n ).

Of course, neither of the two functions, θ̂ψ, and η̂ψ, are, in general, true maximum likelihood
estimators, but are, in fact, only functions of the true constrained maximum likelihood estimator,
β̂ψ.

Nuisance–Free System of Equations The nuisance–free system of equations, [8],[10], are given
by,

Ady = 0,

where,
A = Xt

n×(r−1)DψEψ,

and,

Xt
n×(r−1) =

 x11 . . . x1,r−1

...
. . .

...
xn1 . . . xn,r−1


t

,

Dψ = diagn
{
`iθi;yi |θ̂ψi

}
,

Eψ = diagn

{
∂g(ηi)
∂ηi

|η̂ψ
i

}
.

Local Ancillary–Like Property of Nuisance–Free System. Details of the derivation of
Ady = 0 can be found in Kuhn, [10]. However, the essential idea behind this system is that the
score of ˜̀=

∑n
i=1 `i with respect to the nuisance parameters, at the constrained maximum likelihood

estimator of the parameter, θ̂ψ, is zero; that is,

∂ ˜̀

∂λ
|θ̂ψ = 0,



Since this score is zero, locally, at the constrained maximum likelihood estimator value, there is no
change in the log–likelihood, `(θ̂ψ; y), for a change in the nuisance parameters, λ at this value. In
other words, the log–likelihood is locally constant with respect to the (r−1) nuisance parameters at
the constrained maximum likelihood estimator value. It is for this reason, this system describes a
statistic that has ancillary–like properties and, consequently, is called the local nuisance–free system
of equations.

Example of Use of Nuisance–Free System of Equations: Canonical Exponential Dis-
tribution The canonical exponential family distribution, where (y1, . . ., yr−1) = yλ, yr = yψ and
n = r, given by,

f(y; β) = exp{yλλ + yψψ − κ(β) }h(y),

can be factored in the following way,

f(y; β) = g1(y; β) · g2(yψ |yλ;ψ).

This factorization suggests, [8], if ψ were an interest parameter in the presence of nuisance param-
eters, λ, then it would make sense to use conditional density g2(yψ |yλ;ψ) instead of the original
density f(y; β) for inference purposes on ψ since g2 is free of the nuisance parameters whereas f is
not. In particular, notice, the statistic used in g2 is the line, yr = yψ.

This same result can be arrived at, using the local nuisance–free system of equations. Letting
θi = ηi = βi, i = 1, . . ., r, where, as above, r = n, and so,

`(θi; yi) = yλλ + yψψ − κ(β) + lnh(y),

and

`θi;(θi; yi) = yi −
∂κ(β)
∂βi

, `θi;yi(θi; yi) = 1,

and ∂g(ηi)
∂ηi

= 1, for i = 1, . . ., r. Thus,

A = Xt
r×(r−1)DψEψ

=


1 0 . . . 0 0

0 1
. . .

... 0
...

. . . . . . 0 0
0 . . . 0 1 0

 ,

or, dyi = 0, which implies yi = c, i = 1, . . ., r−1, where c is a constant. In other words, the Ady = 0
system of equations, here, suggests, as above, the line yr = yψ as the nuisance–free curve on which
to define a distribution. Since the nuisance–free system produces the usual statistic in this case,
this, thus, provides some justification for the use of the nuisance–free system of equations.

Since the number of variables and parameters which appear in the canonical exponential density
are equal, n = r, the nuisance–free system, in this case, will give the same curve as the parameter
forcing system of equations that include both the nuisance–free and the yet–to–be–explained ancil-
lary directions system of equations. In general, geometrically, the nuisance–free system of equations
reduces the original n–dimensional sample space to an n− r + 1 dimensional statistic.

Ancillary Directions System of Equations Under various technical conditions, described in
Kuhn [10], and, in particular, the ancillary directions assumption, [6], given by,

dFi = 0, i = 1, . . ., n,



the ancillary directions system of equations can be written as,

dy = Vdβ,

where,
V = −FEXn×r,

where,

F = diagn

{
F i;θ1
F iyi;
|θ̂i

}
,

E = diagn

{
∂g(ηi)
∂ηi

|η̂i
}
,

Xn×r =

 x11 . . . x1r
...

. . .
...

xn1 . . . xnr

,
and dβ = (dβ1, . . .,dβn)t and dy = (dy1, . . ., dyn)t.

Parameter Forcing Property of Ancillary Direction System Details of the derivation of
dy = Vdβ can be found in Kuhn, [10]. However, the essential idea behind this system lies with the
ancillary directions assumption; that is,

dFi = F iyi;dyi + F i;θidθi = 0, i = 1, . . . , n,

This assumption restricts the “movement” of the parameters, θi, and variables, yi with respect to
one another. If the parameter changes by a dθi amount, this causes (or forces) a change of

dyi = −
F i;θi
F iyi;

dθi i = 1, . . . , n.

in the variable (and vis–versa). Hence, the term parameter forcing. More than this, Fraser and Reid
[9], suggest this system of equations is, at least, locally and approximately, ancillary.

Example of Use of Ancillary Directions System of Equations If

f(yi; θi) = exp{−yiθi + ln(θi) }, i = 1, . . . , n,

for yi > 0 and where, θi = g(ηi) = exp(ηi), i = 1, . . ., n, and where, η1
...
ηn

 = −

 1 x1 − x̄
...

...
1 xn − x̄

( β1

β2

)
;

then
F;θi

Fyi;
=
yie

−yiθi

θie−yiθi
=
yi
θi

i = 1, . . ., n,

and
∂g(ηi)
∂ηi

=
∂eηi

∂ηi
= eηi = g(ηi) = θi, i = 1, . . ., n.



and so

V = −FEXn×r

= −

 y1x11 y1x12

...
...

ynxn1 ynxn2


=

 v11 v12
...

...
vn1 vn2

 =
(

v1 v2

)
.

The tangent subspace for this example is a two–dimensional plane defined by the two n–
dimensional column vectors, v1 and v2; the possible ancillary directions are defined in this plane.

In this exponential case, the explicit analytic calculation of the ancillary directions matrix V
from Vdβ = dy, is relatively easy to do. However, the determination of Fyi;, F;θi and the various
maximum likelihood estimators in V are generally quite tricky to do. It is because of these tedious
analytical calculations, that a computer program has been developed to handle them numerically.

The practical purpose of the ancillary directions system is to reduce the (n− r+ 1)–dimensional
variable space, defined by the nuisance–free system of equations, to a 1–dimensional subspace of this
space. This one–dimensional curve is called the parameter forcing statistic.

Parameter Forcing System of Equations The parameter forcing system of equations is the
intersection of the ancillary directions system and the local nuisance–free system, given by,(

A(r−1)×n(θ̂ψ) 0(r−1)×r
−In×n Vn×r(θ̂)

)(
dy
dβ

)

= Φ(n+r−1)×(n+r)(u)du =

 0
...
0

 ,

where the Φ matrix is of dimension (n + r − 1)×(n + r), A(r−1)×n(θ̂ψ) = A = Xt
n×(r−1)DψEψ is

the local nuisance–free matrix and Vn×r(θ̂) = V = −FEXn×r, is the ancillary directions matrix.

Example of Use of Parameter Forcing System of Equations: Normal Consider the problem
where,

yi ∼ F (yi; θi) = N(yi; θi, σi), i = 1, 2,

where, σ1 = σ2 = σ3 = 1 and θi = ηi, i = 1, 3, where, η1
η2
η3

 =

 1 −3
−2 1
−3 −2

(β1

β2

)
.

Locally, at the point y = (1, 1, 1) and for hypothesized interest parameter value, ψ = 2, it can be
shown the parameter forcing system of equations is given by,(

A1×3 01×2

−I3×3 V3×2

)(
dy
dβ

)

=


1 −2 −3 0 0
−1 0 0 1 −3

0 −1 0 −2 1
0 0 −1 −3 −2




dy1
dy2
dy3
dλ
dψ





=


0
0
0
0

 .

After some algebraic manipulation, it can be shown the nuisance–free part of the parameter
forcing system, Ady = 0, can be described either as,

y1 − 2y2 − 3y3 + (−14λ̂ψ0 − ψ0)
= y1 − 2y2 − 3y3 − 14(−0.429)− 2
= y1 − 2y2 − 3y3 + 4 = 0,

or, equivalently, for e1 = (1, 0, 0)t, e2 = (0, 1, 0)t, and e3 = (0, 0, 1)t, as,

b1e1 + b2e2 +
1
3

(b1 − 2b2 + 4)e3.

The ancillary directions system, Vdy = dβ, can be immediately described either as,

(b1 − 3b2)e1 + (−2b1 + b2)e2 + (−3b1 + 2b2)e3,

or, equivalently,

−7
5
y1 −

11
5
y2 + y3 = 0,

where the linear functional part of this last equation annihilates the two basis vectors of the ancillary
directions system.

The two ancillary direction basis vectors, v1 = (1,−2,−3)t and v2 = (−3, 1, 2)t, span a two–
dimensional subspace (a plane) of the three–dimensional variable space. The nuisance–free system
also defines a plane in the variable space. The intersection of these two planes is the parameter
forcing path, a line, which can be described as,(

43
25
b− 44

25

)
e1 +

(
−16

25
b− 28

25

)
e2 + be3.

In this case, since the number of variables, n, is greater than the number of parameters, r,
n = 3 > r = 2, the two–dimensional variable subspace defined by the ancillary directions system,
Vdy = dβ, restricts the two–dimensional nuisance–free system of equations to the one–dimensional
parameter forcing path. The ancillary directions system acts to reduce the size of the sample space
to the number of parameters so that the local nuisance–free system can then be used to define the
parameter forcing path.

The parameter forcing system defines a 1–dimensional tangent line (local point of view) at a
point on the 1–dimensional parameter forcing system curve or path manifold (global point of view).
Under mild (that is, easy–to–satisfy) technical conditions, the tangent line can be integrated up to
define the parameter forcing system path.

The 1–dimensional parameter forcing system curve could be thought of as the result of an inter-
section the r–dimensional ancillary directions system and the (r−1)–dimensional local nuisance–free
system. An equivalent global geometric interpretation is that the parameter path results from a
two–step reduction in the dimension of the variable space. The variable space is first reduced to the
r–dimensional ancillary directions space and then, within this space, a second reduction of (r − 1)–
dimensions, given by the nuisance–free system, leads to the 1–dimensional parameter forcing path.
From this second point of view, the parameter forcing system of equations could be interpreted as
a 1–dimensional path within or conditional with respect to the ancillary directions space.



3 Parameter Forcing Distribution

The parameter forcing distribution is given by,

c

(2π)
1
2

exp{˜̀(θ̂ψ; y)− ˜̀(θ̂; y)}
|˜̀β;V(θ̂; y)||̂λ|

1/2

|˜̀λ;V
(θ̂ψ; y)||̂|1/2

where,

˜̀
β;V

(θ̂; y) = Xt
n×rDEV,

˜̀
λ;V

(θ̂ψ; y) = Xt
n×(r−1)DψEψV,

̂ = −Xt
n×r(E

tJE + CL)Xn×r,

̂λ = −Xt
n×(r−1)(EψJψEt

ψ

+CψLψ)Xn×(r−1).

and where in addition to the previously defined matrices, there is also,

C = diagn

{
∂g(ηi)
∂ηi∂ηi

|η̂i
}
,

Cψ = diagn

{
∂g(ηi)
∂ηi∂ηi

|η̂ψ
i

}
,

Dψ = diagn
{
`iθi;yi |θ̂iψ

}
,

L = diagn
{
`iθi;(θ̂; y)

}
,

Lψ = diagn
{
`iθi;(θ̂ψ; y)

}
,

J = diagn
{
`iθiθi;(θ̂; y)

}
,

Jψ = diagn
{
`iθiθi;(θ̂ψ; y)

}
.

The derivation of this parameter forcing distribution uses quotient differentials; and further
details are given in Kuhn [5].

Example of Calculation of Parameter Forcing Distribution: Exponential Revisited The
parameter forcing conditional density approximation is calculated at the first two points, under the
following conditions. The density is,

fi = θie
−yiθi , yi > 0, i = 1, 2.

The initial point on the parameter forcing path is the observed variable value, assumed to be
y0 = (y0

1 , y
0
2) = (0.25, 0.25). The interest test parameter is βψ2 = ψ = 0.7 and the one nuisance

test parameter is given by βψ1 = λ1. Also,

Xn×r = X2×2 = X =
(
x11 x12

x21 x22

)
=
(
−1 −2
−1 2

)
,

and the inverse link function is the exponential, where θi = eηi , i = 1, 2.



At the initial point, y0 = (0.25, 0.25),

˜̀(θ̂; y) = 0.773,
˜̀(θ̂ψ; y) = −0.759,

|˜̀β;V(θ̂; y)| = 16,

|˜̀λ;V
(θ̂ψ; y)| = 16.553,

|̂|1/2 = 4,
|̂λ|

1/2 = 1.414,

and so, if c = 1, the parameter forcing distribution evaluated at this point is f = 0.030.
Using the parameter forcing system of equations to get to the second point, (y1, y2) =

(0.309, 0.246),

˜̀(θ̂; y) = 0.576,
˜̀(θ̂ψ; y) = −0.756,

|˜̀β;V(θ̂; y)| = 16,

|˜̀λ;V
(θ̂ψ; y)| = 15.810,

|̂|1/2 = 4,
|̂λ|

1/2 = 1.715.

Consequently, if c = 1, f = 0.046.
This procedure is repeated until the parameter forcing path and corresponding parameter forcing

conditional density approximations at each point along the path is complete. These un–normalized
values are then normalized by dividing each by their sum. A p–value, for example, is determined
by adding all the normalized values at or more extreme than some given observed point on the
parameter forcing statistic.

4 Example of Numerical Calculation of Parameter Forcing
Statistic and Distribution: Normal With Three Variables

In this version of the normal example, n = 3 and r = 2. The underlying density, fi, i = 1, 2, 3, is
chosen to be the non-standard normal with interest distribution mean θi and nuisance distribution
standard deviation, σi = 1, i = 1, 2, 3 The initial point on the parameter forcing path is the observed
variable value, assumed to be y0 = (y0

1 , y
0
2 , y

0
3) = (1, 1, 1). The interest test parameter is assumed to

be βψ2 = ψ = 2 and the one nuisance test parameter is given by βψ1 = λ1. The systematic component
is given by,

Xn×r = X3×2 = X =

 1 −3
−2 1
−3 −2

 ,

and so, Xn×(r−1) = (x11, x21, x31)t = (1,−2,−3)t. Let the inverse link function be the identity,
where θi = ηi, i = 1, 2, 3.

The parameter forcing path is a one–dimensional line in a three dimensional variable space. This
linear parameter forcing path can be analytically (exactly) determined as,(

43
25
b− 44

25

)
e1 +

(
−16

25
b− 28

25

)
e2 + be3,



or,
(1.72b− 1.76)e1 + (−0.64b+ 1.12)e2 + be3,

where e1 = (1, 0, 0)t, e2 = (0, 1, 0)t and e2 = (0, 0, 1)t. By way of comparison, the numerical
parameter forcing path finds, using the two calculated variable points, y0 = (1, 1, 1)t and y3 =
(−1.300, 1.859,−0.333)t,

(2.300b+ 1)e1 + (−0.859b+ 1)e2 + (1.333b+ 1)e3,

which is equivalent to

(1.720b+ 1)e1 + (−0.642b+ 1)e2 + (0.997b+ 1)e3.

In other words, the numerically determined parameter forcing statistic is close to the analytically
determined parameter forcing statistic.

The p–value, determined by adding all the normalized parameter forcing distribution values at
or more extreme than the observed variable value, y0 = (1, 1, 1) on the parameter forcing statistic, is
found to be 0.0000. Thus, there is evidence against the hypothesized β3 = 2 at the observed variable
value y = (1, 1, 1).

5 Summary, Conclusions and Future Work

The parameter forcing method is used to approximate the p–value for an interest parameter in the
Generalized Linear Model. More specifically, this paper has described a one–dimensional statistic,
called a parameter forcing statistic, which displays ancillary–like properties for the nuisance param-
eters, along with a possible approximate distribution for this statistic, called the parameter forcing
distribution.

Not only do various properties (ancillarity, in particular) of this method need to be more carefully
pursued but also the present numerical procedure needs to be improved to be able to deal with
problems with larger dimensional parameter and sample spaces.

Nonetheless, the parameter forcing method appears to apply to a broad class of models, in-
cluding the generalized Generalized Linear Models described above. More than this, the procedure
is numerical, rather than analytical, and so could be used by those less familiar with statistical
techniques.
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