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Abstract: A numerical procedure for an approximation of the p–value associated with

the likelihood ratio of a variable associated with the observed constrained maximum

likelihood estimate which has been conditioned on a ancillary statistic, and which

is used to test an interest parameter in the presence of nuisance parameters for a

generalized linear model (McCullagh and Nelder, 1989), is described. Both the p∗ ap-

proximation formula (Barndorff–Nielsen 1983) and the local tangent ancillary statistic

(Fraser and Reid 2001) are used in this paper.
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1 Introduction

In generalized linear models, the parameter space can be partitioned into two types

of parameters,

β = (β1, . . ., βr−1, βr)

= (λ1, . . ., λr−1, ψ)

= (λ, ψ)

where λ is a vector of nuisance parameters and ψ is a scalar interest parameter. If

it is possible to factor the likelihood into two pieces where one is a function of the

nuisance parameters alone and the other is a function of the interest parameter alone,

then it seems reasonable to use the second function for inference about the interest

parameter since the first function is independent of the interest parameter ψ. (Cox

and Hinkley 1974, Lindsey 1996, Reid 2000).

Many attempts have been made to find an appropriate factorization of the like-

lihood which use some combination of the variously defined notions of sufficiency,

ancillarity and information (Barndorff–Nielsen 1978, Lindsey 1996). In particular,

it has been suggested that it would be ideal to identify from the data variable y of

dimension n, an ancillary statistic a(y) of dimension n− r for all of the parameters,

β = (λ, ψ), such that the model factorizes as

f(y; β) = f1(s; )f2(s|a; β).

and so the conditional likelihood L2(β; s|a) could, in general, be used for inference

purposes (Fraser, McDunnough and Reid 1987, Reid 2000). Since this conditional

likelihood is not available in general and in the present generalized linear model con-

text in particular, it has further been suggested that the constrained maximum likeli-

hood estimator of the interest parameter in the presence of the nuisance parameters,

β̂ψ(s|a), which appears in the profile likelihood for ψ,

Lp(ψ; s|t) = Lp(ψ, β̂ψ(s|a); s|a)

and, more particularly, the likelihood ratio of the profile likelihood for ψ,

Lp(ψ; s|a)

Lp(ψ̂; s|a)



could be used for inference on ψ because, in this case, the profile likelihoods can then

be approximated very accurately by the p∗ formula in an asymptotic sense (Barndorff–

Nielsen 1983, 1999).

One difficulty is the ancillary statistic required in the calculation of p∗ formula

calculation is left unspecified, aside from requiring that the dimension of the variable

space be reduced to the same dimension as the parameter space upon conditioning

on this ancillary statistic and other technical considerations. In other words, many

possible particular ancillary statistics could be used in general and for the generalized

linear model inference model in particular when using the p∗ formula. The particular

ancillary statistic used in this paper which allows the use of the p∗ formula is the

local tangent ancillary statistic suggested by Fraser and Reid (Fraser and Reid 1995,

Fraser 1964). Although this statistic is technical in nature and so does not necessarily

apply in any and all practical inference problems (Cox and Hinkley 1974), it does have

the advantage of always reducing the dimension of the variable space to the required

dimension of the parameter space and so always allow the use of the accurate p∗

formula approximation.

The test statistic developed in this paper is the variable associated with the ob-

served constrained maximum likelihood estimate of the interest parameter in the

presence of the nuisance parameters, which has been conditioned on the local tangent

ancillary statistic a(y) = y. This test statistic is defined by a system of differential

equations and describes a one–dimensional curve in n–dimensional variable space.

Since the test statistic is a one–dimensional curve, this allows for convenient inte-

gration of the associated distribution defined on this curve and so calculation of the

p–value for testing purposes.

The p–value is approximated by a numerical procedure in two steps. First, the

likelihood ratio of the profile likelihood for ψ,

Lp(ψ; s|a)

Lp(ψ̂; s|a)
,

is calculated at points all along the one–dimensional test statistic curve. Second, the

sum of likelihood ratios from the point on this curve specified by the null hypothesized

value of the interest parameter, ψ0, is divided by the sum of the likelihood ratios over



the entire length of the test statistic curve. Further differential–geometric analytical

methods in statistics can be found in, for example, Amari (1985).

The version of the generalized linear model and testing problem assumed in this

paper is described. Both the system of differential equations of the test statistic

and the associated likelihood ratio of the profile likelihood for ψ in the context of

this generalized linear model are derived. The results of a numerical example are

described, followed by some discussion.

2 Generalized Linear Model, Inference and Some

Notation

After the version of the generalized linear model used for this analysis is described,

some notation is specified.

Generalized Linear Model and Inference For Interest Parameter The ver-

sion of the generalized linear model assumed in this paper consists of three compo-

nents. The random component consists of a sequence of independent random variables

(y1, . . ., yn),

yi ∼ Fi(yi; θi), i = 1, . . ., n,

where each distribution Fi is continuous and monotonic in the parameter θi. The

systematic component is given by, η1
...
ηn

 =

 x11 . . . x1r
...

. . .
...

xn1 . . . xnr


 β1

...
βr

 , r ≤ n,

or, in short, η = Xβ. The inverse link functions are given by,

θi = g(ηi), i = 1, . . . , n,

where g is a monotonic differentiable function.

The problem dealt with in this paper is: given an observed set of the random

variables, (y0
1, . . ., y

0
n), as specified in detail above, and in the presence of the unknown

nuisance test parameters, (β1, . . ., βr−1) = (λ1, . . ., λr−1), test an interest parameter

βr = ψ by calculating an appropriate p–value.



Notation Capital bold letters are matrices. For example, A is a matrix. The matrix

A(r−1)×n is a (r − 1)×n matrix.

The notation dyi, i = 1, . . ., n is used to describe the differentials (one–forms) of

the variables and dθi, i = 1, . . ., n are differentials for the parameters. A (column) n–

vector of variable differentials is given by dy = (dy1, . . ., dyn)
t. A (column) n–vector

of parameter differentials is given by dβ = (dβ1, . . ., dβn)
t.

The notation used to describe the derivative of the log–likelihood ˜̀ =
∑n
i=1 `i,

elli = logLi, with respect to the parameter λ = (λ1, . . ., λr−1) is given by ˜̀
λ;

. In a

similar way, the derivative of the log–likelihood ˜̀ with respect to the variable y =

(y1, . . ., yn) is given by ˜̀
;y.

Since the systematic component of the generalized linear model is given by η =

Xβ, with inverse link functions, θi = g(ηi), i = 1, . . . , n, the following notation, with

regard to constrained (with respect to the interest parameter ψ) maximum likelihood

estimators is used,

ηi(β̂ψ) = ηi(λ̂ψ, ψ),

= ηi(λ̂
ψ
1 , . . ., λ̂

ψ
r−1, ψ)

= xi1λ̂
ψ
1 + . . .+ xi,r−1λ̂

ψ
r−1 + xi,rψ

= η̂ψi , i = 1, . . ., n,

and,

η̂ψ = (η̂ψ1 , . . ., η̂
ψ
n ),

and also,

θ̂ψ = (g(η̂ψ1 ), . . ., g(η̂ψn )) = (θ̂ψ1 , . . ., θ̂
ψ
n ).

Neither of the two functions, θ̂ψ, and η̂ψ, are, in general, true maximum likelihood

estimators, but are, in fact, only functions of the true constrained maximum likelihood

estimator, β̂ψ.

3 Test Statistic For Generalized Linear Model

There are two important pieces to the system of differential equations that describe

the test statistic for the generalized linear model. One is the local tangent ancillary



statistic, a(y) = a, and the other is the variable associated with the observed con-

strained maximum likelihood estimate of the interest parameter in the presence of

the nuisance parameters. The systems of differential equations associated with these

two pieces are first discussed separately and then combined into a single system of

differential equations for the one–dimensional test statistic curve. Simple analytical

(non–numerical) examples are also given.

3.1 Local Tangent Ancillary Statistic

The local tangent ancillary statistic, a(y) = a, is defined by the assumption that

all of the total differentials of the distributions of the independent random variables

(y1, . . . , yn), Fi(yi; θi), are zero,

dFi = F i
yi;

dyi + F i
;θi

dθi = 0, i = 1, . . . , n.

Roughly speaking, this assumption imposes a restriction on the “movement” of a

parameter, θi, and a variable, yi with respect to one another. If the parameter

changes by a dθi amount, this causes (or forces) a change of

dyi = −
F i

;θi

F i
yi;

dθi i = 1, . . . , n

in the variable (and vis–versa), while, at the same time, the value of each Fi(yi; θi)

remains constant (does not change) with respect to changes in either the variable or

parameter, Fi(yi; θi) = c, i = 1, . . . , n. More than this, Fraser and Reid (1995, 2001)

suggest this system of differential equations is ancillary in a local tangent asymptotic

approximate sense. This type of ancillary was first proposed in Fraser (1964).

Applying the local tangent ancillary assumption to the generalized linear model

(Kuhn 1994, pp. 78 and 83), the following local tangent ancillary directions system

of differential equations can be derived as,

dy = Vdβ, (1)

where V = −FEXn×r and

F = diagn

{
F i

;θ1

F i
yi;

|θ̂i

}
, E = diagn

{
∂g(ηi)

∂ηi
|η̂i

}
, Xn×r =

 x11 . . . x1r
...

. . .
...

xn1 . . . xnr

,



and where this local set of differential equations is evaluated at the maximum likeli-

hood estimators η̂i, i = 1, . . . , n.

Exponential Example If the random component of the generalized linear model is

the exponential distribution,

Fi(yi; θi) = 1− exp{−yiθi}, yi > 0, i = 1, . . . , 4,

where each Fi is monotonic with respect to each θi, and the systematic component is
η1

η2

η3

η4

 =


1 1
1 2
1 3
1 4


(
β1

β2

)
,=


1 1
1 2
1 3
1 4


(
λ
ψ

)
,

and the link function is θi = g(ηi) = exp(ηi), i = 1, . . ., n, where g is monotonic, then

F;θi

Fyi;
=
yie

−yiθi

θie−yiθi
=
yi
θi

i = 1, . . ., 4,

and
∂g(ηi)

∂ηi
=
∂eηi

∂ηi
= eηi = g(ηi) = θi, i = 1, . . ., 4.

and so

V = −FEXn×r = −


y1 y1

y2 2y2

y2 3y2

yn 4yn

 .
At the variable point y0 = (y0

1, y
0
2, y

0
3, y

0
4) = (2, 3, 4, 5), for example, where dy = Vdβ

or −dy + Vdβ = 0 and so

(
−I4×4 V4×2

)( dy
dβ

)
=


−1 0 0 0 2 2

0 −1 0 0 3 6
0 0 −1 0 4 12
0 0 0 −1 5 20





dy1

dy2

dy3

dy4

dλ
dψ


=


0
0
0
0

 .

This system of differential equations maps from the six–dimensional (n+r = 4+2 = 6)

variable–parameter space to a two–dimensional plane (the local tangent ancillary

statistic), which, intentionally, is the same dimension as the parameter space alone.



In this case, the explicit analytic calculation of the local tangent ancillary statistic is

relatively easy to do. In particular, the θi parameters cancel out during the analysis

and, as a consequence, the maximum likelihood estimators, θ̂i need not be determined.

However, in general, the determination of the maximum likelihood estimators and the

Fyi;, F;θi for the local tangent ancillary statistic are difficult to determine. More than

this, since the analysis is a local one, these calculations need to be repeated at every

variable point y0 along the test statistic curve. It is because of these considerations,

that the calculation of the local tangent ancillary statistic is done in a numerical

fashion.

3.2 Observed Constrained Maximum Likelihood Estimator

The variable associated with the observed constrained maximum likelihood estimate

of the interest parameter in the presence of the nuisance parameters is used for testing

purposes in this paper essentially because the likelihood ratio of the profile likelihood

associated with this statistic can be approximated very accurately by the p∗ formula

in an asymptotic sense (Barndorff–Nielsen 1983, 1999). For this statistic, the score of

˜̀(θ̂;y) =
∑n
i=1 `i(θi; yi) with respect to the nuisance parameters, at the constrained

maximum likelihood estimator of the parameter, θ̂ψ, is zero; that is,

∂ ˜̀

∂λ
|θ̂ψ = 0.

Since the score of the constrained maximum likelihood estimator, ˜̀
λ(θ̂;y)|θ̂ψ , is zero

(implying this estimator is constant with respect to the parameters in a local sense),

then the total differential of this score is zero, d˜̀
λ(θ̂;y)|θ̂ψ = 0, and, more than this,

is influenced by the variable y only,

d˜̀
λ(θ̂;y)|θ̂ψ = ˜̀

λ,θψ ;(θψ;y)|θ̂ψdθψ + ˜̀
λ;y(θψ;y)|θ̂ψdy

= ˜̀
λ;y(θψ;y)|θ̂ψdy = 0.

Whereas for the local tangent ancillary statistic above, where each Fi(yi; θi) remains

constant with respect to changes in either the variable or parameter, Fi(yi; θi) = c,

i = 1, . . . , n, here, for the constrained maximum likelihood estimator, ˜̀(θ̂;y) remains



constant (in a local sense) with respect to the parameters alone. In other words, each

statistic exhibits a different kind of local ancillarity.

For the generalized linear model, d˜̀
λ(θ̂;y)|θ̂ψ = 0 can be described by the follow-

ing system of differential equations (Kuhn 1994, pp. 90–92),

Ady = 0, (2)

where A = Xt
n×(r−1)DψEψ and where

Xt
n×(r−1) =

 x11 . . . x1,r−1
...

. . .
...

xn1 . . . xn,r−1


t

, Dψ = diagn
{
`iθi;yi|θ̂ψi

}
, Eψ = diagn

{
∂g(ηi)

∂ηi
|η̂ψi

}
.

The constrained maximum likelihood estimator, β̂ψ, maps from the (n + 1)–

dimensional variable–(interest parameter) space to an (r− 1)–dimensional space. At

an observed point in the variable space, y0, and for a hypothesized parameter value,

ψ0, this estimator becomes an estimate and takes on one value, β̂ψ(y0;ψ0) = β̂
0

ψ.

In addition to the one observed variable point, y0, there are typically other vari-

able points, y1,y2, . . ., which also have the same estimator value, β̂ψ(y1;ψ0) = β̂
0

ψ,

β̂ψ(y2;ψ0) = β̂
0

ψ, . . .. This set of points, the statistic {y|β̂ψ(y;ψ0) = β̂
0

ψ}, is what

is described by Ady = 0. The observed constrained maximum likelihood estimate

remains unchanged (constant) for all values of the statistic described by Ady = 0. It

is more typical to discuss the profile likelihood associated with the constrained max-

imum likelihood estimator statistic (Barndorff–Nielsen 1983, Reid 2000), rather than

focusing on the differential–geometric interpretation (Amari 1985) of the statistic

itself , as is done here.

Exponential Example Revisited Continuing with the exponential example started

above, since

`(θi; yi) = ln θi − yiθi, `θi;(θi; yi) =
1

θi
− yi, `θi;yi(θi; yi) = −1,

and g(ηi)
ηi

= θi, for i = 1, . . ., 4,

A = Xt
n×(r−1)DψEψ



=


2
3
4
5


t

`1θ1;y1

|θ̂ψ1
∂g(η1)
∂η1

|η̂ψ1 0 0 0

0 `2θ2;y2
|θ̂ψ2

∂g(η2)
∂η2

|η̂ψ2 0 0

0 0 `3θ3;y3
|θ̂ψ3

∂g(η3)
∂η3

|η̂ψ3 0

0 0 0 `4θ4;y4
|θ̂ψ4

∂g(η4)
∂η4

|η̂ψ4



=
(
−2 −3 −4 −5

)

−θ̂ψ1 0 0 0

0 −θ̂ψ2 0 0

0 0 −θ̂ψ3 0

0 0 0 −θ̂ψ4


=

(
2θ̂ψ1 3θ̂ψ2 4θ̂ψ3 5θ̂ψ4

)
,

where θ̂ψi = exp{xi1β̂ψ1 + xi2ψ}, i = 1, 2, 3, 4, and so

A1×4dy =
(

2θ̂ψ1 3θ̂ψ2 4θ̂ψ3 5θ̂ψ4
)

dy1

dy2

dy3

dy4

 = 0.

This system of differential equations maps from the four–dimensional variable space to

a four–dimensional hyperplane. Unlike for the local tangent ancillary statistic above,

where the θi parameters cancel out during the analysis and, as a consequence, the

maximum likelihood estimators, θ̂i, need not be determined, here, in this case, they

do not cancel out and are difficult to determine without using a numerical analysis.

3.3 Test Statistic

The test statistic is the variable associated with the observed constrained maximum

likelihood estimate of the interest parameter in the presence of the nuisance parame-

ters, {y|β̂ψ(y;ψ0) = β̂
0

ψ}, which has been conditioned on the local tangent ancillary

statistic a(y) = y. This amounts to finding the intersection of the two systems of

differential equations, equations 1 and 2, given above,

φ(n+r−1)×(n+r) =

(
A(r−1)×n 0(r−1)×r
−In×n Vn×r

)(
dy
dβ

)
= 0n+r−1

where Ady = 0 has been rewritten as Ady + 0dβ = 0. The test statistic system

of differential equations is an example of a Pfaffian system of one–forms and the

conditions under which this system is integrable are given in, for example, Abraham,

Marsden and Ratiu (1983).



Exponential Example Revisited At the variable point y0 = (y0
1, y

0
2, y

0
3, y

0
4) =

(2, 3, 4, 5),

(
A1×4 01×2

−I4×4 V4×2

)(
dy
dβ

)
=


2θ̂ψ1 3θ̂ψ2 4θ̂ψ3 5θ̂ψ4 0 0
−1 0 0 0 2 2

0 −1 0 0 3 6
0 0 −1 0 4 12
0 0 0 −1 5 20





dy1

dy2

dy3

dy4

dλ
dψ


=


0
0
0
0
0

 .

This system of differential equations maps from the six–dimensional variable–

parameter space to a one–dimensional line (the test statistic).

Normal Example Consider the problem where,

yi ∼ F (yi; θi) = N(yi; θi, σi), i = 1, 2, 3

where, σ1 = σ2 = σ3 = 1 and θi = ηi, i = 1, 2, 3, where, η1

η2

η3

 =

 1 −3
−2 1
−3 −2

( β1

β2

)
.

Locally, at the observed variable point y0 = (1, 1, 1) and for hypothesized interest

parameter value, ψ0 = 2, it can be shown the test statistic system of differential

equations is given by,

(
A1×3 01×2

−I3×3 V3×2

)(
dy
dβ

)
=


1 −2 −3 0 0

−1 0 0 1 −3
0 −1 0 −2 1
0 0 −1 −3 −2




dy1

dy2

dy3

dλ
dψ

 =


0
0
0
0

 ,

where, because φ4×5 is (locally) constant with respect to (y,β) = (y1, y2, y3, λ, ψ),

can be rewritten as the following (easier to solve) system of linear equations (rather

than differential equations),


1 −2 −3 0 0

−1 0 0 1 −3
0 −1 0 −2 1
0 0 −1 −3 −2



y1

y2

y3

λ
ψ

 =


c
c
c
c

 ,



where, if the constant of integration is zero, c = 0, has a parametric solution,

of (−43
14
b, 8

7
b,−25

14
b,− 1

14
b, b), where the parameter is b, or, using basis vectors e1 =

(1, 0, 0, 0, 0)t, . . ., e5 = (0, 0, 0, 0, 1)t, of

−43

14
be1 +

8

7
be2 −

25

14
be3 −

1

14
be4 + be5

or, with respect to the variables (y1, y2, y3) alone, of

−43

14
b

 1
0
0

+
8

7
b

 0
1
0

− 25

14
b

 0
0
1


which is the one–dimensional test statistic curve. The given observed variable point

y0 = (1, 1, 1) is defined to be (must be) on this curve. In a numerical procedure,

where the parametric value is, say, b = 14 × 0.1, the next variable point y1 of this

test statistic curve is

y1 = y0 + dy =

 1
1
1

+

 −43
14
× 14× 0.01

8
7
× 14× 0.01

−25
14
× 14× 0.01

 =

 0.57
1.16
0.75


The test statistic is, in this case, a line, although, in general, it need not be (it could

be curved).

4 Test Statistic Distribution For Generalized Lin-

ear Model

Applying a version of the p∗ formula with an appropriate Jacobian to allow for invari-

ant reparameterization (Barndorff–Nielsen and Cox 1994) to both the numerator and

denominator of the likelihood ratio of the profile likelihood for interest parameter ψ,

Lp(ψ; s|a)

Lp(ψ̂; s|a)
,

a local asymptotic approximate distribution for the test statistic is given by (Kuhn

1994),

c

(2π)
1
2

exp{˜̀(θ̂ψ;y)− ˜̀(θ̂;y)}
|˜̀β;V(θ̂;y)||̂λ|

1/2

|˜̀λ;V
(θ̂ψ;y)||̂|1/2



where,

˜̀
β;V

(θ̂;y) = Xt
n×rDEV,

˜̀
λ;V

(θ̂ψ;y) = Xt
n×(r−1)DψEψV,

̂ = −Xt
n×r(E

tJE + CL)Xn×r,

̂λ = −Xt
n×(r−1)(EψJψE

t
ψ + CψLψ)Xn×(r−1),

and, in addition to the previously defined matrices, there is also,

C = diagn

{
∂g(ηi)

∂ηi∂ηi
|η̂i

}
, Cψ = diagn

{
∂g(ηi)

∂ηi∂ηi
|η̂ψi

}
, Dψ = diagn

{
`iθi;yi|θ̂iψ

}
,

L = diagn
{
`iθi;(θ̂;y)

}
, Lψ = diagn

{
`iθi;(θ̂ψ;y)

}
,

J = diagn
{
`iθiθi;(θ̂;y)

}
, Jψ = diagn

{
`iθiθi;(θ̂ψ;y)

}
.

This local asymptotic approximate distribution for the test statistic is calculated at

points all along the one–dimensional test statistic curve, ultimately to be used to

determine the p–value.

5 Examples of Numerical Calculation of P–Value

In general, the p–value is approximated by the numerical procedure in two steps.

First, the local asymptotic approximation of the likelihood ratio of the profile likeli-

hood for ψ,
Lp(ψ; s|a)

Lp(ψ̂; s|a)
,

is calculated at points plotted all along the one–dimensional test statistic curve,

{y|β̂ψ(y;ψ0) = β̂
0

ψ}. Second, the sum of these values starting from the observed

point, y0, on this curve and also specified by the null hypothesized value of the in-

terest parameter, ψ0, is divided by the sum of all values over the entire length of the

test statistic curve. A normal example is described in detail; other examples are also

given.



5.1 Normal Example

Let n = 2 and r = 2. The underlying distribution, Fi, i = 1, 2, is chosen to be

the non-standard normal with interest distribution mean θi and nuisance distribution

standard deviation, σi, i = 1, 2, arbitrarily set equal to 2. The initial point on the test

statistic curve is the observed variable value, assumed to be y0 = (y0
1, y

0
2) = (1, 1).

The interest test parameter is assumed to be βψ2 = ψ = 3 and the one nuisance test

parameter is given by βψ1 = λ. The systematic component is given by,

X2×2 =

(
2 1
1 2

)
,

and let the inverse link function be the identity, where θi = ηi, i = 1, 2. The p–value is

calculated to test the interest parameter, ψ = 3 at the observed point y0 = (y0
1, y

0
2) =

(1, 1).

The first couple of iterations of the numerical method are given in some detail.

Then, the remaining iterations are summarized into a table which gives a sequence

of variable values of the test statistic curve and also the associated local asymptotic

approximation values at these variable points.

Iteration 1: Density Approximation at y0. The un–normed density approximation at

y0 given by,

f0 ≈ c

2π
1
2

exp
{
˜̀
0(θ̂

0
ψ;y)− ˜̀

0(θ̂0;y)
} |˜̀0β;V(θ̂0;y)||̂0λ|1/2

|˜̀0λ;V(θ̂0
ψ;y)||̂0|1/2

=
c

2π
1
2

exp {−8.238 + 1.838} (8.994)(2.236)

(40.975)(3)
,

≈ 7.7× 10−5.

Iteration 2: Test Statistic Calculation, y+
1 = y0 +dy+

0 and y−1 = y0 +dy−0 . The first

variable value point along the test statistic curve in the positive direction from the

observed point, y+
1 = y0 + dy+

0 , is determined by first calculating dy+
0 in the test



statistic system of equations, where A0 = A+
0 and V0 = V+

0 ,

(
A0,+ 0
−I V0,+

)(
dy+

0

dβ+
0

)
=

 0.5 0.25 0 0
−1 0 2 1
0 −1 1 2




dy+
1

dy+
2

dλ+
1

dψ+

 =

 0
0
0

 .

and so,

dy+
0 =

(
−0.075
0.150

)
;

thus,

y+
1 = y0 + dy+

0 =

(
1
1

)
+

(
−0.075
0.150

)
=

(
0.925
1.150

)
.

In a similar way, the first variable value point along the test statistic curve in the

negative direction from the observed point is given by,

y−1 = y0 + dy−0 =

(
1
1

)
+

(
0.075
−0.150

)
=

(
1.075
0.850

)
.

Iteration 2: Density Approximation at y+
1 and y−1 . The un–normed density approxi-

mations at y+
1 and y−1 are given by, respectively,

f+
1 ≈ 6.7× 10−4, f−1 ≈ 5.6× 10−6.

Table of Test Statistic and Approximate Distribution Values. The numerical proce-

dure continues calculating points of the test statistic, {y|β̂ψ(y;ψ0) = β̂
0

ψ}, and the

associated density values that approximate cLp(ψ;s|a)

Lp(ψ̂;s|a)
, where c is a normalizing con-

stant, in a similar manner. The table below provides a partial list of the results of

this numerical procedure. The density values have been normalized by dividing each

by the sum of all un–normalized values calculated during the numerical procedure

and so, for example, un–normalized f+
1 = 6.7×10−4 becomes normalized f+

1 ≈ 0.006.

position -3 -2 -1 0 1 2 3
y1 1.898 1.599 1.300 1.000 0.700 0.400 0.100
y2 -0.797 -0.199 0.400 1.000 1.600 2.200 2.799

density, f = cLp(ψ;s|a)

Lp(ψ̂;s|a)
0.000 0.000 0.000 0.001 0.006 0.035 0.125



position 4 5 6 7 8 9 10
y1 -0.199 -0.499 -0.799 -1.099 -1.428 -1.747 -2.057
y2 3.398 3.998 4.598 5.198 5.857 6.493 7.113

density, f = cLp(ψ;s|a)

Lp(ψ̂;s|a)
0.286 0.416 0.384 0.159 0.054 0.012 0.002

Ignoring the numerical error, the points of the test statistic, {y|β̂ψ(y;ψ0) = β̂
0

ψ},
given in the table above could be plotted as a one–dimensional line, y1+

1
2
y2+

3
2

= 0, in

the two–dimensional variable space. The associated density values that approximate

cLp(ψ;s|a)

Lp(ψ̂;s|a)
identify a bell–shaped curve on this test statistic. The p–value, calculated

as the smallest of the two sums of approximate density values to either side of the

observed value at position zero (0), is found to be 0.0003. In other words, there is

evidence against the hypothesized ψ = 3 value at the observed value y0 = (1, 1) for

this generalized linear problem.

5.2 Other Examples

Normal With Three Variables. In this version of the normal example, assume there are

three variables, n = 3 (instead of 2, as in the first version) and two parameters, r = 2.

The underlying distribution, Fi, i = 1, 2, 3, is chosen to be the non-standard normal

with interest distribution mean θi and nuisance distribution standard deviation, σi =

1, i = 1, 2, 3. The one nuisance test parameter is given by βψ1 = λ. The systematic

component is given by,

X3×2 =

 1 −3
−2 1
4 2

 .
Let the inverse link function be the identity, where θi = ηi, i = 1, 2, 3. The p–value is

calculated to test the interest parameter, ψ = 3 at the observed point y0 = (y0
1, y

0
2) =

(1, 1).

Ignoring the numerical error, the points of the test statistic, {y|β̂ψ(y;ψ0) = β̂
0

ψ},
could be plotted as a one–dimensional line,(

43

25
b− 44

25

)
e1 +

(
−16

25
b− 28

25

)
e1 + be3



where b is a parameterizing constant and ei are basis vectors, in the three–dimensional

variable space. Also ignoring numerical error, the associated density values that

approximate cLp(ψ;s|a)

Lp(ψ̂;s|a)
identify a bell–shaped curve on this test statistic. The p–value

is 0.0000; thus, there is no evidence against the hypothesized ψ = 2 at the observed

variable value y = (1, 1, 1).

Exponential With Exponential Link. Let n = 2 and r = 2. The underlying distribution

is

Fi(yi; θi) = 1− exp{−yiθi}, yi > 0, i = 1, 2.

The initial point on the test statistic curve is the observed variable value, assumed to

be y0 = (y0
1, y

0
2) = (0.25, 0.25). The interest test parameter is assumed to be ψ = 0.7

and the one nuisance test parameter is given by βψ1 = λ. Also,

X2×2 =

(
−1 −2
−1 2

)
.

The inverse link function is the exponential, where θi = eηi , i = 1, 2.

The test statistic is a one–dimensional line and the associated density is near bell–

shaped on this test statistic. The p–value is 0.003; thus, there is no evidence against

the hypothesized ψ = 0.7 at the observed variable value y = (0.25, 0.25). In contrast

to the two examples above, this example could not easily be solved in an analytical

way.

Exponential With Three Variables and Exponential Link. Let n = 2 and r = 2. The

underlying distribution is

Fi(yi; θi) = 1− exp{−yiθi}, yi > 0, i = 1, 2.

The initial point on the test statistic curve is the observed variable value, assumed

to be y0 = (y0
1, y

0
2, y

0
3) = (0.4, 0.5, 0.55). The interest test parameter is assumed to be

ψ = 0.1 and the one nuisance test parameter is given by λ. Also,

X3×2 =

 −0.1 −0.2
−0.3 −0.5
−0.2 −0.2

 .



The inverse link function is the exponential, where θi = eηi , i = 1, 2, 3.

The test statistic is a one–dimensional non–linear curve and the associated density is

near bell–shaped on this test statistic. The p–value is 0.388; thus, there is no evidence

against the hypothesized ψ = 0.1 at the observed variable value y0 = (0.4, 0.5, 0.55).

Other Examples. Other examples have also been investigated, including for the Erlang

and half normal distributions. These examples and the computer program used to

calculate them can be found on the authors’ web site.

6 Discussion

The procedure proposed in this paper is more or less strictly numerical in nature

and cannot be used to solve generalized linear model problems, except those of a

simple nature, in an analytical way (although it might be possible that clever use of

analytic symbolic language software packages, such as Maple, might produce results

in more advanced problems). Even using the numerical procedure given in this paper,

only problems with a small number of variables and parameters can be dealt with

successfully before succumbing to numerical issues of, for example, matrix singularity.

The success of this numerical procedure necessarily relies on highly sophisticated

advanced numerical routines; in particular, the numerical procedure used in this

paper could be improved by using more advanced procedures, such as the EM method

(Lindsey 1996), say, to determine maximum likelihood estimates.

Rather than calculate the approximate density values and then sum these values to

obtain the p–value, as is done in this paper, it seems more sensible to obtain the

p–value directly from an accurate approximation to the distribution. This way, there

is less chance that the numerical errors will overwhelm the analytical accuracy of the

method; some work on this for the generalized linear model has been done in Fraser

and Reid 2001.

Both the test statistic, {y|β̂ψ(y;ψ0) = β̂
0

ψ} and the associated p∗ approximation of



the likelihood ratio of the profile likelihood for ψ,

Lp(ψ; s|a)

Lp(ψ̂; s|a)
,

are difficult to calculate in both an analytical and numerical sense. The complexity

of calculation might be reduced by creating a test statistic, such as a r∗–like statistic

(Barndorff–Nielsen 1991) which approximates the well–known normal distribution,

say, rather than some function of the complicated p∗ formula, as is the case in this

paper.

Fraser and Reid (1995, 2001) have studied general cases of the ancillary statistic used

in this paper, defined by

Ady = 0.

Most importantly, and as stated previously, they appear to have shown this statistic is

ancillary in a local sense. Not only this, it also appears that it is possible to condition

the variable associated with the observed constrained maximum likelihood estimate

of the interest parameter in the presence of the nuisance parameters, {y|β̂ψ(y;ψ0) =

β̂
0

ψ}, on the local tangent ancillary statistic a(y) = y under very general conditions

because the latter is defined to be tangent to the former and so the two will intersect

with respect to one another. Nonetheless, is this ancillary statistic necessarily the

right one? Are there are other ancillary statistics that can be integrated into the

procedure given in this paper and how would they compare to the one chosen here?

The main strength of the numerical method given in this paper is that it provides a

possible technique to calculating the p–value in a broad class of problems. Also, pos-

sibly more importantly, the differential–geometric nature of the analysis may provide

a fruitful direction to pursue. In particular, it is of interest that the test statistic is,

in general, a one–dimensional curve (rather than, necessarily, a line) in variable space

and that this curvature may have some bearing on some properties of the problem,

such as with respect to ancillarity, sufficiency or information, say. The differential–

geometric analysis used in this analysis is possibly more sensitive or adaptable to

local influences of the nuisance parameter than other global analyses in some sense.



It may not necessarily be the case that the local analysis given in this paper will pro-

duce results that necessarily match up with previous global results and so it somewhat

surprising when they do. For example, the canonical exponential family distribution,

where (y1, . . ., yr−1) = yλ, yr = yψ and n = r, given by,

f(y; β) = exp{yλλ + yψψ − κ(β) }h(y),

can be factored in the following way,

f(y; β) = g1(y; β) · g2(yψ |yλ;ψ).

This factorization suggests (Fraser and Reid 1988) if ψ were an interest parameter in

the presence of nuisance parameters, λ, then it would make sense to use conditional

density g2(yψ |yλ;ψ) instead of the original density f(y; β) for inference purposes

on ψ since g2 is free of the nuisance parameters whereas f is not. In particular,

notice, the test statistic used in density g2 is the line, yr = yψ. An analysis using

the local tangent ancillary statistic Ady = 0 described in this paper gives the same

result. Further study is required to more carefully compare this method to other

more traditional global methods.

7 Acknowledgements

The author thanks D.A.S. Fraser for his help.

8 References

R. Abraham, J.E. Marsden, T. and Ratiu (1983). Manifolds, Tensor Analysis, and

Applications, Springer–Verlag, Berlin.

S. Amari (1985). Differential–Geometrical Methods in Statistics, Springer–Verlag,

Berlin.

O. Barndorff–Nielsen (1978). Information and Exponential Families in Statistical

Theory, John Wiley, New York.



O. Barndorff–Nielsen (1983). On a formula for the distribution of the maximum

likelihood estimator, Biometrika. 70(2), pp 343–365.

O. Barndorff–Nielsen (1991). Modified signed log likelihood ratio, Biometrika. 78(3),

pp 557–563.

O. Barndorff–Nielsen (1999). L-nonformation, L-ancillarity and L-sufficiency. Theory

of Probability and Its Applications. 44, pp 225-229.

O. Barndorff–Nielsen and D.R. Cox (1994). Inference and Asymptotics. Chapman

and Hall, London.

D.R. Cox and D.V. Hinkley (1974). Theoretical Statistics. Chapman and Hall, Lon-

don.

D.R. Cox and E. Snell (1981). Applied Statistics, Principles and Examples. Chapman

and Hall, London.

D.A.S. Fraser (1964). Local conditional sufficiency. The Journal of the Royal Statis-

tical Society Series B, 26(1), pp 52–62.

D.A.S. Fraser, P. McDunnough, and N. Reid (1987). Some aspects of conditioning.

Proceedings of the Symposium in Honor of M.M. Ali, University of Western Ontario.

D.A.S. Fraser and N. Reid (1988). Fibre analysis and conditional inference. in Ma-

tusita, M., editor, Statistical Theory and Data Analysis II, Teikyo University, North–

Holland.

D.A.S. Fraser and N. Reid (1995). Ancillaries and third order significance. Utilitas

Mathematica, 47, 33–53.

D.A.S. Fraser and N. Reid (2001). Ancillary information for statistical inference.

Proceedings of a Symposium on Empirical Bayes and Likelihood Inference. Springer–

Verlag, New York, too appear.

J.R.D. Kuhn (1994). Parameter Forcing. Ph.D. Thesis, University of Toronto.

J.K. Lindsey (1996). Parametric Statistical Inference. Clarendon Press, Oxford.



P. McCullagh and J. Nelder (1989). Generalized Linear Models. Chapman and Hall,

London.

N. Reid (2000). Likelihood. Journal of the American Statistical Association, 95, pp

1335–1340.

Y. Zhu and N. Reid (1994). Information, ancillarity ad sufficiency in the presence of

nuisance parameters. Canadian Journal of Statistics, 22, pp 111–123.


