Quiz Practice Questions 7 for Mathematics 223 Introductory Analysis I - Fall 2001 Material Covered: Sections 4.5.4.6 of workbook and text For: Friday, 29th November

This is a 15 minute quiz, worth 5% and marked out of 5 points. The total possible points awarded for each question is given in square brackets at the beginning of each question. Anything that can fit on one side of an $8\frac{1}{2}$ by 11 inch piece of paper may be used as a reference during this quiz. A calculator may also be used. No other aids are permitted.

Name (please print):			. ID Number:	
	last	first		
1. [1 point]				
Express 8^{kt} as a power of	e		<u> . . </u>	
2. [1 point] Let $f(x) = \log x$	$g_4 x.$			
Then $f'(x) =$				
3. [2 points] Let $f(x) = x$	x.			
Then $f'(x) =$				
4. [1 point] Determine th	e elasticity o	f D(p) = 200 -	3p at p = 65.	

- (1) $e^{kt\ln 8}$
- (2) $\frac{1}{x \ln 4}$
- (3) $x^{x}(\ln x + 1)$

$$\ln y = \ln x^{x}$$
$$= x \ln x$$
$$\frac{1}{y} \frac{dy}{dx} = \ln x + x(1/x)$$
$$\frac{dy}{dx} = y(\ln x + 1)$$
$$\frac{dy}{dx} = x^{x}(\ln x + 1)$$

(4) 39

$$E(p) = -\frac{pD'(p)}{D(p)} = -\frac{p(-3)}{200-3p} = \frac{(65)(3)}{200-3(65)} = 39$$