Quiz 2 for Mathematics 223 Introductory Analysis I - Fall 1999 Material Covered: Sections 2.1,2.2 of text and notes For: 24th September

This is a 15 minute quiz, worth 6% and marked out of 6 points. The total possible points awarded for each question is given in square brackets at the beginning of each question. Anything that can fit on one side of an $8\frac{1}{2}$ by 11 inch piece of paper may be used as a reference during this quiz. A calculator may also be used. No other aids are permitted.

Name (please print):		ID Number:		
	()	last	first	
1.	[1] If $f(x) = 2^{\frac{4}{3}}, f'(x) \approx$	\pm (circle one) -1.5	/ 0.5 / 0	$0 \ / \ 2.0 \ / \ 2.5$
2.	[1] Find $\frac{dy}{dx}$			
	for $y = 12x^{\frac{7}{6}}$.			
3.	[2] If $f(x) = (x - 2)^2$, the function of $f(x) = (x - 2)^2$.	hen		
	$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = -$			

4. [2] At what point on the graph of $y = 3x^{\frac{2}{3}}$ is the slope equal to 10? (circle one) $\left(\frac{1}{125}, \frac{15}{125}\right) / \left(\frac{2}{125}, \frac{15}{125}\right) / \left(\frac{3}{125}, \frac{15}{125}\right) / \left(\frac{4}{125}, \frac{15}{125}\right) / \left(\frac{5}{125}, \frac{15}{125}\right)$

1. [1] **0**

2. [1] $14x^{\frac{1}{6}}$

3. [2] If
$$f(x) = (x-2)^2$$
, then

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{((x+h)-2)^2 - (x-2)^2}{h}$$

$$= \lim_{h \to 0} \frac{x^2 + xh - 2x + xh + h^2 - 2h - 2x - 2h + 4 - (x^2 - 4x + 4)}{h}$$

$$= \lim_{h \to 0} (2x + h - 4) = 2x - 4$$

4. [2]
$$(\frac{1}{125}, \frac{15}{125})$$

since $\frac{dy}{dx} = 2x^{-\frac{1}{3}}, 2x^{-\frac{1}{3}} = 10$ or $x = \frac{1}{125}$
and so $y = y = 3x^{\frac{2}{3}} = 3\left(\frac{1}{125}\right)^{\frac{2}{3}} = \frac{3}{25}$