Chapter 6

Applications of the Derivative

We continue to look at applications of the derivative, in particular *related rates*, and the techniques associated with these applications, such as identifying *absolute extrema*, and *implicit differentiation*.

6.1 Absolute Extrema

Function f at c, f(c), in an interval has an

absolute maximum	$\text{if } f(x) \le f(c),$
absolute minimum	$\text{if } f(x) \ge f(c),$

for all x in the interval. Technique for identifying absolute extrema depends on whether the interval is open or closed. For *closed* intervals, the *extreme value theorem* is used to identify absolute extrema. This theorem says a continuous function fon a closed interval [a, b] will/must have both an absolute maximum and absolute minimum. Consequently, in the closed interval case,

- 1. evaluate f all critical numbers in (a, b),
- 2. evaluate f at endpoints a and b of [a, b],
- 3. largest f is absolute maximum; smallest is absolute minimum.

If f is defined on an open interval (a, b), evaluate the *limit* of f as it approaches the endpoints; there is no absolute extrema if the limit is $\pm \infty$. In the special case when there is only one critical number c, the critical point theorem says for function f defined on (either open or closed) interval I,

if f has relative minimum at x = c this relative minimum is an absolute minimum, if f has relative maximum at x = c this relative maximum is an absolute maximum. Although treated in a similar manner, allowances are made for identifying absolute extrema for functions with discontinuities. A related question of finding the maximum of $g(x) = \frac{f(x)}{x}$ is given by finding x such that $f'(x) = \frac{f(x)}{x}$, in other words, finding the x where slope of tangent, f'(x) equals slope of line from origin to point x.

Exercise 6.1 (Absolute Extrema)

1. Extrema candidate points, endpoints and absolute extrema.

Figure 6.1 (Extrema candidate points, endpoints and absolute extrema)

- (a) Endpoint(s) at (choose one or more)
 (i) A (ii) B (iii) C (iv) D (v) E
 (vi) F (vii) G (viii) H (ix) I (x) none
 because function is defined on an open interval (-5, 5) and so there are no endpoints
- (b) Extrema candidate points(s) at (choose one or more)
 (i) A (ii) B (iii) C (iv) D (v) E
 (vi) F (vii) G (viii) H (ix) I (x) none
 but not removable discontinuity point H because the function does not exist at this point
- (c) Relative minimum at (choose one or more)
 (i) A (ii) B (iii) C (iv) D (v) E
 (vi) F (vii) G (viii) H (ix) I (x) none
- (d) Absolute minimum at (choose one)
 (i) A (ii) B (iii) C (iv) D (v) E
 (vi) F (vii) G (viii) H (ix) I (x) none
 because function value at point E is smallest of all the relative minima
- (e) Relative maximum at (choose one or more)
 (i) A (ii) B (iii) C (iv) D (v) E
 (vi) F (vii) G (viii) H (ix) I (x) none

- (f) Absolute maximum at (choose one)
 (i) A (ii) B (iii) C (iv) D (v) E
 (vi) F (vii) G (viii) H (ix) I (x) none
 because function value at point D is largest of all the relative maxima
- 2. More extrema candidate points, endpoints and absolute extrema.

Figure 6.2 (More extrema candidate points, endpoints and absolute extrema)

- (a) Endpoint(s) at (choose one or more) (i) **A** (ii) **B** (iii) **C** (iv) **D** (v) **E** (vi) **F** (vii) **G** (viii) **H** (ix) **I** (x) **none** because function is defined on $[-5,5), x \neq 2$
- (b) Extrema candidate points(s) at (choose one or more)
 (i) A (ii) B (iii) C (iv) D (v) E
 (vi) F (vii) G (viii) H (ix) I (x) none
 but not points D or F because
 function is decreasing both before and after jump discontinuity point D
 and, for point F, function approaches ± infinity, not a specific large number, when x → 2
 (c) Relative minimum at (choose one or more)
 (i) A (ii) B (iii) C (iv) D (v) E
 (vi) F (vii) G (viii) H (ix) I (x) none
- (d) Absolute minimum at (choose one) (i) \mathbf{A} (ii) \mathbf{B} (iii) \mathbf{C} (iv) \mathbf{D} (v) \mathbf{E} (vi) \mathbf{F} (vii) \mathbf{G} (viii) \mathbf{H} (ix) \mathbf{I} (x) none

because function value at point B is smallest of all the relative minima

(e) Relative maximum at (choose one or more)
(i) A (ii) B (iii) C (iv) D (v) E

(vi) \mathbf{F} (vii) \mathbf{G} (viii) \mathbf{H} (ix) \mathbf{I} (x) none

including endpoint A but not jump discontinuity point D

(f) Absolute maximum at (choose one)
(i) A (ii) B (iii) C (iv) D (v) E
(vi) F (vii) G (viii) H (ix) I (x) none

because function value at point C is larger than value of function at point E or endpoint A

3. Absolute extrema: f(x) = 5x - 4 revisited

Figure 6.3 (Absolute extrema: f(x) = 5x - 4)

GRAPH using $Y_1 = 5x - 4$, with WINDOW -5 5 1 -30 30 1 1

- (a) Domain $(-\infty, \infty)$.
 - i. *Critical numbers.* Recall, since

$$f'(x) = 5(1)x^{1-1} = 5 > 0,$$

there (i) is (ii) is no critical number because $f'(x) \neq 0$

ii. Endpoints. lower endpoint. As $x \to -\infty$,

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (5x - 4) =$$

(i) $-\infty$ (ii) **0** (iii) ∞

upper endpoint. As $x \to \infty$,

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} (5x - 4) =$$

(i) $-\infty$ (ii) **0** (iii) ∞

iii. Absolute extrema Since

x - 4
$-\infty$
$\cdot \infty$

absolute minimum is $f(x) = (i) \mathbf{0}$ (ii) $-\infty$ (iii) ∞ (iv) none because f(x) approaches $-\infty$ rather than a particular number and absolute maximum is $f(x) = (i) \mathbf{0}$ (ii) $-\infty$ (iii) ∞ (iv) none because f(x) grows arbitrarily large as $x \to \infty$

- (b) Domain: closed interval [-3, 4].
 - i. Critical numbers. Recall, since

$$f'(x) = 5(1)x^{1-1} = 5 > 0,$$

there (i) is (ii) is no critical number because $f'(x) \neq 0$

ii. Endpoints.

lower endpoint. At x = -3, $f(-3) = 5(-3) - 4 = (i) - \infty$ (ii) ∞ (iii) -19 upper endpoint. At x = 4, f(4) = 5(4) - 4 = (i) 16 (ii) $-\infty$ (iii) ∞

iii. Absolute extrema Since

candidate x	f(x) = 5x - 4
-3	-19
4	16

absolute minimum occurs at $x = (i) -\infty$ (ii) -3 (iii) ∞ (iv) none absolute maximum occurs at x = (i) 4 (ii) $-\infty$ (iii) ∞ (iv) none iv. Calculator check absolute minimum occurs at x = (i) -3 (ii) $-\infty$ (iii) ∞ (iv) none MATH FMin(ENTER 5X - 4, X, -3, 4) absolute maximum occurs at x = (i) 4 (ii) $-\infty$ (iii) ∞ (iv) none MATH FMax(ENTER 5X - 4, X, -3, 4)

- (c) Domain: open interval (-3, 4).
 - i. *Critical numbers.* Recall, since

$$f'(x) = 5(1)x^{1-1} = 5 > 0,$$

there (i) is (ii) is no critical number because $f'(x) \neq 0$

ii. Endpoints.
lower endpoint.
There (i) is (ii) is no lower endpoint because f(x) is defined on an open interval (-3, 4)

upper endpoint. There (i) is (ii) is no upper endpoint because f(x) is defined on an open interval (-3, 4)

- iii. Absolute extrema Absolute minimum occurs at x = (i) -3 (ii) $-\infty$ (iii) ∞ (iv) none because there are no candidate extrema to choose from Absolute maximum occurs at x = (i) 4 (ii) $-\infty$ (iii) ∞ (iv) none because there are no candidate extrema to choose from
- 4. Absolute extrema: $f(x) = x^2 + 4x 21$ revisited

GRAPH using $Y_2 = x^2 + 4x - 21$, with WINDOW -15 15 1 -30 10 1 1

(a) Domain $(-\infty, \infty)$.

i. Critical numbers. Since

$$f'(x) = 2x^{2-1} + 4(1)x^{1-1} = 2x + 4 = 0,$$

there is *one* critical number at $c = -\frac{4}{2} = (i) - 2$ (ii) 2 (iii) 0 and since $f(-2) = (-2)^2 + 4(-2) - 21 = -25$, there is a critical *point* (c, f(c)) = (-2, -25).

ii. Endpoints.

lower endpoint. As $x \to -\infty$,

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(x^2 + 4x - 21 \right) =$$

(i) $-\infty$ (ii) **0** (iii) ∞

lower endpoint. As $x \to \infty$,

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \left(x^2 + 4x - 21 \right) =$$

- (i) $-\infty$ (ii) **0** (iii) ∞
- iii. Absolute extrema Since

candidate x	f(x)
-2	-25
$x \to -\infty$	$f(x) \to -\infty$
$x \to \infty$	$f(x) \to \infty$

absolute minimum is

f(x) = (i) -25 (ii) $-\infty$ (iii) ∞ (iv) none and absolute maximum is f(x) = (i) -25 (ii) $-\infty$ (iii) ∞ (iv) none because f(x) grows arbitrarily large as $x \to \infty$

- iv. (i) **True** (ii) **False** This case is an example of the *critical value* theorem (which says relative extreme is absolute extreme), because there is only one critical value.
- (b) *Domain* [-3, 2].
 - i. *Critical numbers.* Same as before.
 - ii. Endpoints.

lower endpoint. At x = -3, $f(-3) = (-3)^2 + 4(-3) - 21 = (i) \infty$ (ii) -24 (iii) -19 upper endpoint. At x = 2, $f(2) = (2)^2 + 4(2) - 21 = (i) -\infty$ (ii) -9 (iii) ∞ iii. Absolute extrema

Since

candidate x	f(x)
-3	-24
-2	-25
2	-9

absolute minimum is

f(x) = (i) -25 (ii) -24 (iii) ∞ (iv) none and absolute maximum is f(x) = (i) -25 (ii) -9 (iii) ∞ (iv) none iv. *calculator check* absolute minimum occurs at

absolute minimum occurs at x = (i) -25 (ii) -2 (iii) ∞ (iv) none MATH FMin(ENTER $X^2 + 4X - 21$, X, -3, 2) absolute maximum occurs at x = (i) -2 (ii) 2 (iii) ∞ (iv) none MATH FMax(ENTER $X^2 + 4X - 21$, X, -3, 2)

5. Absolute extrema: $f(x) = 2x^3 + 3x^2 - 36x$ revisited

(a) (- ∞ , ∞) (b) [-5.5, 4.6) Figure 6.5 (Absolute extrema: $f(x) = 2x^3 + 3x^2 - 36x$)

GRAPH using $Y_3 = 2x^3 + 3x^2 - 36x$, with WINDOW -10 10 1 -100 100 1 1

- (a) Domain $(-\infty, \infty)$.
 - i. *Critical numbers.* Recall, since

$$f'(x) = 6x^{2} + 6x - 36 = 6(x^{2} + x - 6) = 6(x + 3)(x - 2) = 0,$$

there are *two* critical numbers at c = (i) - 3 (ii) 2 (iii) 6

Section 1. Absolute Extrema (LECTURE NOTES 12)

and since $f(-3) = 2(-3)^3 + 3(-3)^2 - 36(-3) = 81$, there is a critical *point* (c, f(c)) = (-3, 81). and since $f(2) = 2(2)^3 + 3(2)^2 - 36(2) = -44$, there is also critical *point* (c, f(c)) = (2, -44).

ii. Endpoints. lower endpoint. As $x \to -\infty$,

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(2x^3 + 3x^2 - 36x \right) =$$

(i) $-\infty$ (ii) **0** (iii) ∞

upper endpoint. As $x \to \infty$,

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \left(2x^3 + 3x^2 - 36x \right) =$$

(i)
$$-\infty$$
 (ii) **0** (iii) ∞

iii. Absolute extrema Since

candidate x	f(x)
-3	81
2	-44
$x \to -\infty$	$f(x) \to -\infty$
$x \to \infty$	$f(x) \to \infty$

absolute minimum is

f(x) = (i) -44 (ii) $-\infty$ (iii) ∞ (iv) none because $f(x) \to -\infty$ as $x \to -\infty$, even though there is a *relative* minimum and absolute maximum is

f(x) = (i) 81 (ii) $-\infty$ (iii) ∞ (iv) none

because $f(x) \to \infty$ as $x \to \infty$, even though there is a *relative* maximum

(b) Domain [-5.5, 4.6].

- i. *Critical numbers.* Same as before
- ii. Endpoints.

lower endpoint. At x = -5.5, $f(-5.5) = 2(-5.5)^3 + 3(-5.5)^2 - 36(-5.5) =$ (i) -44 (ii) -41 (iii) -19 upper endpoint. There (i) is (ii) is no upper endpoint because f(x) does not exist at the open point x = 4.6However, at x = 4.6, $f(4.6) = 2(4.6)^3 + 3(4.6)^2 - 36(4.6) \approx$ (i) 81 (ii) 92.6 (iii) -19 iii. Absolute extrema

Since

candidate x	f(x)
-5.5	-44
-3	81
2	-41
4.6^* (open point)	92.6*

absolute minimum occurs at

x = (i) -3 (ii) -5.5 (iii) -44 (iv) none and absolute maximum occurs at

$$x = (i) -5.5$$
 (ii) -3 (iii) 4.6 (iv) none

because even through f(x) is an absolute maximum at x = 4.6, f(x) does not exist at this open point, and, also, there is a *relative*, not absolute, maximum at x = -3 because f(x) = 81 is smaller than $f(4.6) \approx 92.6$

iv. calculator check

absolute minimum occurs at

x = (i) 2 (ii) -5.5 (iii) -3 (iv) none MATH FMin(ENTER $2X^3 + 3x^2 - 36X$, X, -5.5, 4.6), which is incorrect! so better to GRAPH, 2nd CALC, minimum, -5.5 ENTER 0 ENTER -4 ENTER and, as explained, an absolute maximum does not exist

6.
$$f(x) = \frac{2x^2+2}{x^2+5}$$
 on $(-\infty, \infty)$
horizontal asymptote
absolute minimum
-1 (0, 2/5) 10

Figure 6.6
$$(f(x) = \frac{2x^2+2}{x^2+5})$$

GRAPH using Y₂ = $\frac{2x^2+2}{x^2+5}$, with WINDOW -10 10 1 -1 3 1 1

(a) Critical numbers.

Let $u(x) = 2x^2 + 2$ and $v(x) = x^2 + 5$. then, $u'(x) = 2(2)x^{2-1} = 4x$ and $v'(x) = 2x^{2-1} = 2x$ and so $v(x)u'(x) = (x^2 + 5)(4x)$ and $u(x)v'(x) = (2x^2 + 2)(2x)$ and so since

$$f'(x) = \frac{v(x) \cdot u'(x) - u(x) \cdot v'(x)}{\left[v(x)\right]^2} = \frac{(x^2 + 5)(4x) - (2x^2 + 2)(2x)}{\left[x^2 + 5\right]^2} = \frac{16x}{x^4 + 10x^2 + 25}$$

there is a critical number at c = (i) -2 (ii) 2 (iii) 0 because 16x = 0 when x = 0and since $f(0) = \frac{2(0)^2 + 2}{(0)^2 + 5} = \frac{2}{5}$, there is a critical point $(c, f(c)) = (0, \frac{2}{5})$.

(b) Endpoints. lower endpoint. As $x \to -\infty$,

$$\lim_{x \to \infty} \frac{2x^2 + 2}{x^2 + 5} = \lim_{x \to \infty} \frac{\frac{2x^2}{x^2} + \frac{2}{x^2}}{\frac{x^2}{x^2} + \frac{5}{x^2}} = \lim_{x \to \infty} \frac{2 + \frac{2}{x^2}}{1 + \frac{5}{x^2}} =$$

(i) **0** (ii) **1** (iii)**2**. upper endpoint. As $x \to \infty$,

$$\lim_{x \to -\infty} \frac{2x^2 + 2}{x^2 + 5} = \lim_{x \to -\infty} \frac{\frac{2x^2}{x^2} + \frac{2}{x^2}}{\frac{x^2}{x^2} + \frac{5}{x^2}} = \lim_{x \to -\infty} \frac{2 + \frac{2}{x^2}}{1 + \frac{5}{x^2}} =$$

(i) **0** (ii) **1** (iii) **2**.

(c) Absolute extrema Since

candidate x	f(x)
0	$\frac{2}{5}$
$x \to -\infty$	$f(x) \rightarrow 2$
$x \to \infty$	$f(x) \to 2$

absolute minimum is (i) 2 (ii) $\frac{2}{5}$ (iii) 0 (iv) none and absolute maximum is (i) 2 (ii) $\frac{2}{5}$ (iii) 0 (iv) none

because f(x) does not equal any particular value, as $x \to \infty$

7. Absolute extrema: $f(x) = x^3 (5.5)^x$ on [-2, 1]Type Y=, then Y₁ = $x^3 (5.5)^x$, WINDOW -2.5 1 1 -0.5 0.5 1 1, then GRAPH

(a) Critical numbers.

Let $u(x) = x^3$ and $v(x) = 5.5^x$. then, $u'(x) = 2(2)x^{2-1} = 3x^2$ and $v'(x) = 2x^{2-1} = (\ln 5.5)5.5^x$ and so $v(x)u'(x) = (5.5^x)(3x^2)$ and $u(x)v'(x) = (x^3)(\ln 5.5)5.5^x$ and so since

$$f'(x) = v(x) \cdot u'(x) + u(x) \cdot v'(x) = (x^2) (5.5^x) (3 + x \ln 5.5)$$

there are *two* critical numbers at $c = (i) - \frac{3}{\ln 5.5} \approx -1.76$ (ii) 0 (iii) $\frac{3}{\ln 5.5}$ (Since $3 + x \ln 5.5 = 0, x = -\frac{3}{\ln 5.5} \approx -1.76$ and also $x^2 = 0$ when x = 0) and since $f(0) = (0)^3 (5.5)^0 = 0$, there is a critical *point* (c, f(c)) = (0, 0). and since $f\left(-\frac{3}{\ln 5.5}\right) = \left(-\frac{3}{\ln 5.5}\right)^3 (5.5)^{-\frac{3}{\ln 5.5}} \approx -0.27$, there is a critical *point* $(c, f(c)) \approx (-1.76, -0.27)$.

(b) Endpoints.

lower endpoint. At x = -2, $f(-2) = (-2)^3 (5.5)^{-2} \approx (i) -0.27$ (ii) 0.26 (iii) 0 upper endpoint. At x = 1, $f(2) = (1)^3 (5.5)^1 \approx (i)$ 5.5 (ii) 0 (iii) -0.26

(c) Absolute extrema Since

candidate x	f(x)
-2	-0.26
$-\frac{3}{\ln 5.5} \approx -1.76$	-0.27
0	0
1	5.5

absolute minimum is at x = (i) - 2 (ii) $-\frac{3}{\ln 5.5}$ (iii) 1 (iv) none and absolute maximum is at x = (i) - 2 (ii) $-\frac{3}{\ln 5.5}$ (iii) 1 (iv) none

- (d) calculator check absolute minimum occurs at x = (i) - 2 (ii) 1 (iii) $-\frac{3}{\ln 5.5}$ (iv) none MATH FMin(ENTER $x^3(5.5)^x$, X, -2, 1) absolute maximum occurs at x = (i) - 2 (ii) 1 (iii) 0 (iv) none MATH FMax(ENTER $x^3(5.5)^x$, X, -2, 1)
- 8. Application, graphical optimization: maximizing profit

Figure 6.7 (Maximizing profit and profit per unit)

Figure gives profit (in 1000s of dollars) versus number of units produced. Determine maximum profit and also maximum profit *per unit*.

Maximum profit Maximum profit occurs at point C, where $p(x) \approx$ (i) **7.1** (ii) **6.5** (iii) **1.5**

Maximum profit *per unit* occurs at point B, where profit $p(x) \approx (i)$ **7.1** (ii) **6.5** (iii) **0.026** and number units $x \approx (i)$ **350** (ii) **250** (iii) **500** and so maximum profit *per unit* is $\frac{p(x)}{x} \approx \frac{6.5}{250} \approx (i)$ **7.1** (ii) **0.034** (iii) **0.026** because to maximize profit/units, let $f(x) = \frac{p(x)}{x}$, and to maximize this, set $f'(x) = \frac{xp'(x)-p(x)(1)}{x^2} = 0$, or $p'(x) = \frac{p(x)}{x}$

6.2 Applications of Extrema

We apply the techniques used in absolute minima and maxima problems to a number of applied topics. Steps to solving applied problems include:

• Determine *function*.

draw a picture to make things clear if possible identify variable to maximize or minimize, express this variable as a function of *one* other variable

- Determine *domain* of function. identify if open or closed interval
- Determine *critical values and endpoints*.
- Identify *absolute extrema*. check results with calculator

Exercise 6.2 (Applications of Extrema)

1. Maximizing area: garden fence.

Figure 6.8 (Maximizing area: garden fence)

Darlene has 200 feet of rabbit fence to enclose a rectangular garden she wishes to put in her backyard. What should be the length and width of this garden to maximize area?

(a) Function.

Let x, y and A represent length, width and area, respectively, so

A = xy

Also, there is 200 feet of fence to enclose four sides to the garden (two lengths and two widths), so

(i) x + y = 200 (ii) 2x + y = 200 (iii) 2x + 2y = 200

in other words, 2y = 200 - 2x or y = 100 - x, so

$$A = xy = x(100 - x) = 100x - x^{2}$$

(b) Domain.

Since length and area cannot be negative; in other words, $x \ge 0$ and $A = x(100 - x) \ge 0$, or

(i) $x \ge 0, x \le 100$ or [0, 100]

(ii) $x \le 0, x \le 100$ or $(-\infty, 100]$

(iii)
$$x \ge 0, x \ge 100$$
 or $[0, \infty)$

(c) Critical numbers. Since

$$A'(x) = 100(1)x^{1-1} - 2x^{2-1} = 100 - 2x,$$

there is *one* critical number at $c = \frac{100}{2} = (i)$ **50** (ii) **2** (iii) **100** and since $A(50) = 100(50) - (50)^2 = 2500$, there is a critical point (c, A(c)) = (50, 2500).

.

(d) Endpoints.

lower endpoint. At x = 0, $A(0) = 100(0) - (0)^2 = (i) 0$ (ii) 100 (iii) 50 upper endpoint. At x = 100, $A(2) = 100(100) - (100)^2 = (i) \mathbf{0}$ (ii) 50 (iii) ∞

(e) Absolute extrema Since

length candidates, x	area, A
0	0
50	2500
100	0

absolute maximum area is

(i) **0** (ii) **2500** (iii) **50** (iv) **none** and occurs when length x is (i) **0** (ii) **2500** (iii) **50** (iv) **none**

also, width y = 100 - x = 100 - 50 = 50

(f) calculator check absolute maximum occurs at x = (i) 0 (ii) **2500** (iii) **50** (iv) none MATH FMax(ENTER $100X - X^2$, X, 0, 100)

2. Maximizing Volume: Pizza Box.

Figure 6.9 (Maximizing volume: pizza box)

Find the (x, y, z) dimensions to fold a 4 by 9 (width x length) piece of cardboard to make a pizza box with maximum volume.

(a) Function.

Let x, y, z and V represent length, width, depth and volume, so

$$V = xyz$$

also, since *width* is 4 feet, so (look at figure)

(i)
$$y + 2z = 4$$
 (ii) $2x + 2z = 4$ (iii) $2x + 2z = 9$
in other words, $y = 4 - 2z$

and since *length* is 9 feet, so (look at figure)

(i) y + 2z = 4 (ii) 2x + 2z = 4 (iii) 2x + 2z = 9in other words, 2x = 9 - 2z or $x = \frac{9-2z}{2}$, so

$$V = xyz = \left(\frac{9-2z}{2}\right)(4-2z)z = \frac{1}{2}(9-2z)(4-2z)z = 2z^3 - 13z^2 + 18z$$

(b) Domain.

Since width, length and depth cannot be negative;

so, for width,

$$y = 4 - 2z \ge 0$$
$$4 \ge 2z$$

so $z \leq 2$

and, for length,

$$x = \frac{9 - 2z}{2} \ge 0$$
$$9 - 2z \ge 0$$
$$9 > 2z$$

so $z \le \frac{9}{2} = 4.5$

and for depth, $z \ge 0$, so combining,

- (i) $z \ge 0, z \le 4.5, z \le 2$ or [0, 2](ii) $z \le 0, z \le 4.5, z \le 2$ or $(-\infty, 2]$ (iii) $z \ge 0, z \ge 4.5, z \ge 2$ or $[4.5, \infty)$
- (c) Critical numbers.

Since

$$V'(z) = 2(3)z^{3-1} - 13(2)z^{2-1} + 18(1)z^{1-1} = 6z^2 - 26z + 18 = 0,$$

there are two (possible) critical numbers at

$$y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(26) \pm \sqrt{(-26)^2 - 4(6)(18)}}{2(6)} = \frac{26 \pm \sqrt{244}}{12} \approx$$

(i) **0.865** (ii) **3.468** (iii) **2**

but since critical value c = 3.468 > 2 is outside domain of function, it is not used and since $f(0.865) = 2(0.865)^3 - 13(0.865)^2 + 18(0.865) \approx 7.138$, there is a critical *point* $(c, f(c)) \approx (0.865, 7.138)$.

(d) Endpoints.

lower endpoint. At z = 0, $V(0) = 2(0)^3 - 13(0)^2 + 18(0) = (i) \mathbf{0}$ (ii) **100** (iii) **50** upper endpoint. At z = 2, $V(2) = 2(2)^3 - 13(2)^2 + 18(2) = (i) \mathbf{0}$ (ii) **50** (iii) ∞

(e) Absolute extrema

Since

depth candidates, z	volume, V
0	0
0.865	7.138
2	0

absolute maximum volume is (i) $\mathbf{0}$ (ii) $\mathbf{7.138}$ (iii) $\mathbf{2}$ (iv) none and occurs when depth z is (i) $\mathbf{0.865}$ (ii) $\mathbf{2500}$ (iii) $\mathbf{50}$ (iv) none

also, width $x = \frac{9-2z}{2} \approx \frac{9-2(0.865)}{2} = 3.635$

and length $x = 4 - 2z \approx 4 - 2(0.865) = 2.27$

(f) calculator check absolute maximum occurs at x = (i) 0 (ii) 0.865 (iii) 2 (iv) none MATH FMax(ENTER $2X^3 - 13^X 2 + 18X$, X, 0, 2)

3. Maximizing Profit.

Figure 6.10 (Maximizing Profit)

Find the number of desks, x, that should be sold to maximize profit, P. The desk manufacturer sells x units if it sets unit price at p(x) = -0.030x + 70 dollars and has weekly costs of $C(x) = -0.015x^2 + 25x + 3100$.

(a) Function.

Profit equals revenue, R = xp(x), minus costs (C)

$$P = R - C = x(-0.030x + 70) - (-0.015x^{2} + 25x + 3100) =$$

(i) $-0.030x^2 + 70x$ (ii) $-0.015x^2 + 25x + 3100$ (iii) $-0.015x^2 + 45x - 3100$

(b) Domain.

Assume number of desks sold is positive, so domain is (i) $x \ge 0$ or $[0, \infty)$ (ii) $x \le 0$ or $(-\infty, 0]$ (iii) $(-\infty, \infty)$

(c) Critical numbers. Since

$$P'(x) = -0.015(2)x^{2-1} + 45(1)x^{1-1} = -0.030x + 45 = 0,$$

there is *one* critical number at $c = (i) \ \mathbf{1000} \quad (ii) \ \mathbf{1250} \quad (iii) \ \mathbf{1500}$ and since $P(1500) = -0.015(1500)^2 + 45(1500) - 3100 = 30650$, there is a critical *point* (c, A(c)) = (1500, 30650).

(d) *Endpoints*.

lower endpoint. At x = 0, $P(0) = -0.015(0)^2 + 45(0) - 3100 = (i) -3100$ (ii) 100 (iii) 50

upper endpoint. As $x \to \infty$,

$$\lim_{x \to \infty} P(x) = \lim_{x \to \infty} \left(-0.015x^2 + 25x + 3100 \right) =$$

(i) $-\infty$ (ii) **0** (iii) ∞

(e) Absolute extrema Since

units candidates, x	profit, P
0	-3100
1500	30650
$x \to \infty$	$P \to -\infty$

absolute maximum profit is

(i) **30650** (ii) **2500** (iii) **50** (iv) none and occurs when number of units x is (i) **0** (ii) **1500** (iii) $x \to x^{-1}$ (iv) none

- (i) 0 (ii) 1500 (iii) $x \to \infty$ (iv) none
- (f) calculator check

It (i) is (ii) is not possible (or, at least, difficult) to use calculator because one end of domain is open-ended, $[0,\infty)$

4. Flu Epidemic.

Figure 6.11 (Flu Epidemic)

The number of people in a city of size 50,000 who will contract the flu within the first t weeks after the first reported case can be predicted using the formula, $N(t) = -1.5t^3 + 50t^2, 0 \le t \le 20$. Find the maximum number of people that get the flu and.

(a) *Function*. Function is given as

$$N(t) = -1.5t^3 + 50t^2$$

- (b) Domain. Domain is given as (i) $t \ge 0$ or $[0, \infty)$ (ii) $(-\infty, \infty)$ (iii) $0 \le t \le 20$ or [0, 20]
- (c) Critical numbers. Since

$$N'(t) = -1.5(3)t^{3-1} + 50(2)t^{2-1} = -4.5t^2 + 100t = t(-1.5t + 100) = 0,$$

there is one critical number at $c = (i) \ \mathbf{0}$ (ii) $\frac{100}{4.5} \approx 22.2$ (iii) $\mathbf{100}$ because critical value $c \approx 22.2 > 20$, outside of domain [0, 20]and since $N(0) = -1.5(0)^3 + 50(0)^2 = 0$, there is a critical point (c, N(c)) = (0, 0).

(d) Endpoints. lower endpoint. At x = 0, $N(0) = -1.5(0)^3 + 50(0)^2 = (i) 0$ (ii) 100 (iii) 8000 *upper endpoint.* At x = 20, $N(20) = -1.5(20)^3 + 50(20)^2 = (i)$ **100** (ii) **0** (iii) **8000**

(e) Absolute extrema Since

time candidates, t	flu cases, N
0	0
20	8000

absolute maximum number of flu cases is (i) 8000 (ii) 20 (iii) 50 (iv) none and occurs at time t =(i) 0 (ii) 20 (iii) $t \to \infty$ (iv) none

(f) calculator check

absolute maximum number of flu cases occur at time $t = (i) \ \mathbf{0} \quad (ii) \ \mathbf{20} \quad (iii) \ \mathbf{t} \to \mathbf{\infty} \quad (iv) \ \mathbf{none}$ MATH FMax(ENTER $-1.5X^3 + 50X^2$, X, 0, 20)