12.3 Taylor Polynomials at 0

The Taylor polynomial of degree n for differentiable function f at x = 0 is

$$P_n(x) = f(0) + \frac{f^{(1)}(0)}{1!}x + \frac{f^{(2)}(0)}{2!}x^2 + \frac{f^{(3)}(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n = \sum_{i=0}^n \frac{f^{(n)}(0)}{i!}x^i.$$

When x = 0, the Taylor polynomial $P_n(x)$ equals the function f exactly, $P_n(0) = f(0)$. For values of x close to 0, $P_n(x) \approx f(x)$. If f is analytic, for larger n, $P_n(x) \approx f(x)$ for x farther away from 0.

Exercise 12.3 (Taylor Polynomials at 0)

- 1. Review of factorial notation.
 - (a) Special mathematical notation, called factorial notation, denoted by an exclamation mark, "!", is used in Taylor polynomials. For example,

$$5! = 5 \times 4 \times 3 \times 2 \times 1 =$$

(i) **100** (ii) **110** (iii) **120**.

(Use your calculator: type five (5), then MATH PRB 4:! ENTER.)

- (b) 7! = (choose one or more)
 - i. $7 \times 6!$
 - ii. 5040
 - iii. $7 \times 6 \times 5!$

iv.
$$7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1$$

(Use your calculator: type seven (7), then MATH PRB 4:! ENTER.)

- (c) $\frac{7!}{5!}$ = (choose one or more)
 - i. $\frac{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{5 \times 4 \times 3 \times 2 \times 1}$
 - ii. 7×6
 - iii. 42
- (d) $\frac{7!}{5!3!}$ = (choose one or more) i. $\frac{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{(5 \times 4 \times 3 \times 2 \times 1)(3 \times 2 \times 1)}$

 - iv.

(e)
$$(7-3)! = (i) 7! - 3!$$
 (ii) 4! (iii) $4 \times 3 \times 2 \times 1$ (iv) 24.

(f)
$$\frac{7!}{(7-3)!}$$
 = (choose one or more)

i.
$$\frac{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{4 \times 3 \times 2 \times 1}$$

ii.
$$7 \times 6 \times 5$$

- (g) By definition (in other words, accept as true that), 0! = 1, and so 0! = (i) 1! (ii) 2! (iii) 3!.
- 2. Approximation and exact values for $f(x) = e^x$ near x = 0.

Figure 12.1 (Taylor polynomial approximations to exponential function)

$$\text{Use WINDOW -5 5 1 -5 5 1 1} \quad \text{ define } Y_1 = 1 + X, \quad Y_2 = Y_1 + \frac{X^2}{2}, \quad Y_3 = Y_2 + \frac{X^3}{6}, \quad Y_4 = e^X$$

since
$$f(0) = e^0 = (i) \mathbf{0}$$
 (ii) $\mathbf{1}$ (iii) \boldsymbol{x}

and
$$f^{(1)}(0) = f'(x) = e^x$$
, so $f^{(1)}(0) = e^0 = (i)$ **0** (ii) **1** (iii) \boldsymbol{x}

then Taylor polynomial of degree 1 for $f(x) = e^x$ at x = 0 is

$$P_1(x) = f(0) + \frac{f^{(1)}(0)}{1!}x = 1 + \frac{1}{1!}x =$$

(i)
$$1+x$$
 (ii) $1+x+\frac{1}{2}x^2$ (iii) $1+x+\frac{1}{2}x^2+\frac{1}{6}x^3$

and since
$$f^{(2)}(0) = e^x$$
, so $f^{(2)}(0) = e^0 = (i)$ **0** (ii) **1** (iii) \boldsymbol{x}

and Taylor polynomial of degree 2 for $f(x) = e^x$ at x = 0 is

$$P_2(x) = f(0) + \frac{f^{(1)}(0)}{1!}x + \frac{f^{(2)}(0)}{2!}x^2 = 1 + \frac{1}{1!}x + \frac{1}{2!}x^2 = 1$$

(i)
$$1 + x$$
 (ii) $1 + x + \frac{1}{2}x^2$ (iii) $1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3$

and so since $f^{(3)}(0) = e^x$, so $f^{(3)}(0) = e^0 = (i)$ **0** (ii) **1** (iii) \boldsymbol{x}

and Taylor polynomial of degree 3 for $f(x) = e^x$ at x = 0 is

$$P_3(x) = f(0) + \frac{f^{(1)}(0)}{1!}x + \frac{f^{(2)}(0)}{2!}x^2 + \frac{f^{(3)}(0)}{3!}x^3 = 1 + \frac{1}{1!}x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 = 1 + \frac{1}{1!}x + \frac{1}{2!}x^3 + \frac{1}{3!}x^3 = 1 + \frac{1}{1!}x + \frac{1}{3!}x^3 + \frac{1}{3!}x^3 = 1 + \frac{1}{1!}x + \frac{1}{3!}x^3 + \frac{1}{3!}x^3 = 1 + \frac{1}{1!}x + \frac{1}{1!}x + \frac{1}{3!}x^3 = 1 + \frac{1}{1!}x +$$

Functions $P_1(x)$, $P_2(x)$, $P_3(x)$ and f(x) evaluated at various values of x:

	$P_1(x)$ Approximation	$P_2(x)$ Approximation	$P_3(x)$ Approximation	Exact
x	1+x	$1 + x + \frac{1}{2}x^2$	$1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3$	$f(x) = e^x$
-1	0	0.5	0.33333	0.36788
-0.1	0.9	0.905	0.90483	0.90484
-0.01	0.99	0.99005	0.99005	0.99005
-0.001	0.999	0.9990005	0.9990005	0.9990005
0	1	1	1	1
0.001	1.001	1.001	1.001001	1.001001
0.01	1.01	1.01005	1.010050	1.010050
0.1	1.1	1.105	1.105167	1.10517
1	2	2.5	2.666667	2.71828

Define $Y_1 = 1 + X$, $Y_2 = Y_1 + \frac{X^2}{2}$, $Y_3 = Y_2 + \frac{X^3}{6}$, $Y_4 = e^X$ 2nd TBLSET -1 1 Ask Auto 2nd TABLE, type -1 -0.1 -0.01 ...

From the table, the Taylor polynomial $P_n(x)$ is closer to $f(x) = e^x$ for x (i) **closer to** (ii) **farther from** 0 and for (i) **smaller** (ii) **larger** n

3. Approximation and exact values for $f(x) = e^{4x}$ near x = 0.

since
$$f(0) = e^0 = (i) \ \mathbf{0} \ (ii) \ \mathbf{1} \ (iii) \ \boldsymbol{x}$$

and

$$f^{(1)}(x) = e^{4x} \times 4 \cdot 1x^{1-1} =$$

(i)
$$4e^{4x}$$
 (ii) e^{4x} (iii) $4x$

by chain rule

then Taylor polynomial of degree 1 for $f(x) = e^{4x}$ at x = 0 is

$$P_1(x) = f(0) + \frac{f^{(1)}(0)}{1!}x = 1 + \frac{4e^{4(0)}}{1!}x = 1$$

(i)
$$1 + 4x$$
 (ii) $1 + 4x + 8x^2$ (iii) $1 + 4x + 8x^2 + \frac{32}{3}x^3$

and

$$f^{(2)}(x) = 4e^{4x} \times 4 \cdot 1x^{1-1} =$$

(i)
$$4e^{4x}$$
 (ii) $16e^{4x}$ (iii) $4x$

by chain rule and product rule

then Taylor polynomial of degree 2 for $f(x) = e^{4x}$ at x = 0 is

$$P_2(x) = f(0) + \frac{f^{(1)}(0)}{1!}x + \frac{f^{(2)}(0)}{2!}x^2 = 1 + \frac{4e^{4(0)}}{1!}x + \frac{16e^{4(0)}}{2!}x^2 = 1 + \frac{16e^{4(0)}}{1!}x + \frac{16e^{4(0)}}{2!}x + \frac$$

(i)
$$1 + 4x$$
 (ii) $1 + 4x + 8x^2$ (iii) $1 + 4x + 8x^2 + \frac{32}{3}x^3$

and

$$f^{(3)}(x) = 16e^{4x} \times 4 \cdot 1x^{1-1} =$$

(i)
$$4e^{4x}$$
 (ii) $16e^{4x}$ (iii) $64e^{4x}$

by chain rule and product rule

and Taylor polynomial of degree 3 for $f(x) = e^{4x}$ at x = 0 is

$$P_3(x) = f(0) + \frac{f^{(1)}(0)}{1!}x + \frac{f^{(2)}(0)}{2!}x^2 + \frac{f^{(3)}(0)}{3!}x^3 = 1 + \frac{4e^{4(0)}}{1!}x + \frac{16e^{4(0)}}{2!}x^2 + \frac{64e^{4(0)}}{3!}x^3 = 1 + \frac{4e^{4(0)}}{1!}x + \frac{16e^{4(0)}}{2!}x + \frac{16e^{4(0)}}{3!}x + \frac{16e^{4(0)}}{3!}x$$

(i)
$$1 + 4x$$
 (ii) $1 + 4x + 8x^2$ (iii) $1 + 4x + 8x^2 + \frac{32}{3}x^3$

and

$$f^{(4)}(x) = 64e^{4x} \times 4 \cdot 1x^{1-1} =$$

 $(\mathrm{i}) \ \mathbf{16} e^{4x} \quad (\mathrm{ii}) \ \mathbf{64} e^{4x} \quad (\mathrm{iii}) \ \mathbf{256} e^{4x}$

by chain rule and product rule

and Taylor polynomial of degree 4 for $f(x) = e^{4x}$ at x = 0 is

$$P_4(x) = f(0) + \frac{f^{(1)}(0)}{1!}x + \frac{f^{(2)}(0)}{2!}x^2 + \frac{f^{(3)}(0)}{3!}x^3 + \frac{f^{(4)}(0)}{4!}x^4$$
$$= 1 + \frac{4e^{4(0)}}{1!}x + \frac{16e^{4(0)}}{2!}x^2 + \frac{64e^{4(0)}}{3!}x^3 + \frac{256e^{4(0)}}{4!}x^4 =$$

(i)
$$1 + 4x$$
 (ii) $1 + 4x + 8x^2$ (iii) $1 + 4x + 8x^2 + \frac{32}{3}x^3 + \frac{32}{3}x^4$

Functions $P_4(x)$ and f(x) evaluated at various values of x:

	$P_4(x)$ Approximation	Exact
x	$1 + 4x + 8x^2 + \frac{32}{3}x^3 + \frac{32}{3}x^4$	$f(x) = e^{4x}$
-0.1	0.6704	0.67032
-0.01	0.96079	0.96079
0	1	1
0.01		1.04081
0.1		1.49182

Define $Y_1=1+4X$, $Y_2=Y_1+8X^2$, $Y_3=Y_2+\frac{32X^3}{3}$, $Y_3=Y_3+\frac{32X^4}{3}$, $Y_4=e^{4X}$ 2nd TBLSET -1 1 Ask Auto 2nd TABLE, type -0.1 -0.01 0 0.01 0.1

4. Approximation and exact values for $f(x) = \frac{1}{1-3x} = (1-3x)^{-1}$ near x = 0.

since
$$f(0) = \frac{1}{1-3(0)} = (i) \ \mathbf{0}$$
 (ii) $\mathbf{1}$ (iii) \boldsymbol{x}

and

$$f^{(1)}(x) = -(1-3x)^{-2} \times -3 \cdot 1x^{1-1} =$$
 (i) $\frac{1}{(1-3x)^2}$ (ii) $\frac{3}{(1-3x)}$ (iii) $\frac{3}{(1-3x)^2}$

then Taylor polynomial of degree 1 for $f(x) = \frac{1}{1-3x}$ at x = 0 is

$$P_1(x) = f(0) + \frac{f^{(1)}(0)}{1!}x = 1 + \frac{\frac{3}{(1-3(0))^2}}{1!}x =$$

(i)
$$1 + 3x$$
 (ii) $1 + 3x + 9x^2$ (iii) $1 + 3x + 9x^2 + 27x^3$

and

$$f^{(2)}(x) = 3 \cdot -2(1-3x)^{-3} \times -3 \cdot 1x^{1-1} =$$
 (i) $\frac{3}{(1-3x)^2}$ (ii) $\frac{6}{(1-3x)}$ (iii) $\frac{18}{(1-3x)^3}$

then Taylor polynomial of degree 2 for $f(x) = \frac{1}{1-3x}$ at x = 0 is

$$P_2(x) = f(0) + \frac{f^{(1)}(0)}{1!}x + \frac{f^{(2)}(0)}{2!}x^2 = 1 + \frac{\frac{3}{(1-3(0))^2}}{1!}x + \frac{\frac{18}{(1-3(0))^3}}{2!}x^2 = 1$$

(i)
$$1 + 3x$$
 (ii) $1 + 3x + 9x^2$ (iii) $1 + 3x + 9x^2 + 27x^3$

and

$$f^{(3)}(x) = 18 \cdot -3(1-3x)^{-4} \times -3 \cdot 1x^{1-1} =$$
 (i) $\frac{3}{(1-3x)^2}$ (ii) $\frac{162}{(1-3x)^4}$ (iii) $\frac{162}{(1-3x)^3}$

and Taylor polynomial of degree 3 for $f(x) = \frac{1}{1-3x}$ at x = 0 is

$$P_3(x) = f(0) + \frac{f^{(1)}(0)}{1!}x + \frac{f^{(2)}(0)}{2!}x^2 + \frac{f^{(3)}(0)}{3!}x^3 = 1 + \frac{\frac{3}{(1-3(0))^2}}{1!}x + \frac{\frac{18}{(1-3(0))^3}}{2!}x^2 + \frac{\frac{162}{(1-3x)^4}}{3!}x^3 = 1 + \frac{\frac{1}{(1-3(0))^2}}{1!}x + \frac{\frac{1}{(1-3(0))^3}}{2!}x^2 + \frac{\frac{1}{(1-3x)^4}}{3!}x^3 = 1 + \frac{\frac{1}{(1-3(0))^3}}{1!}x + \frac{\frac{1}{(1-3(0))^3}}{2!}x + \frac{\frac{1}{(1-3(0))^3}}{3!}x + \frac{\frac{1}{$$

(i)
$$1 + 3x$$
 (ii) $1 + 3x + 9x^2$ (iii) $1 + 3x + 9x^2 + 27x^3$

and

$$f^{(4)}(x) = 162 \cdot -4(1-3x)^{-5} \times -3 \cdot 1x^{1-1} =$$
(i) $\frac{1944}{(1-3x)^5}$ (ii) $\frac{648}{(1-3x)^4}$ (iii) $\frac{162}{(1-3x)^3}$

and Taylor polynomial of degree 4 for $f(x) = \frac{1}{1-3x}$ at x = 0 is

$$P_4(x) = f(0) + \frac{f^{(1)}(0)}{1!}x + \frac{f^{(2)}(0)}{2!}x^2 + \frac{f^{(3)}(0)}{3!}x^3 + \frac{f^{(4)}(0)}{4!}x^4$$
$$= 1 + \frac{\frac{3}{(1-3(0))^2}}{1!}x + \frac{\frac{18}{(1-3(0))^3}}{2!}x^2 + \frac{\frac{162}{(1-3x)^4}}{3!}x^3 + \frac{\frac{1944}{(1-3(0))^5}}{4!}x^4 =$$

(i)
$$1+3x+9x^2$$
 (ii) $1+3x+9x^2+27x^3$ (iii) $1+3x+9x^2+27x^3+81x^4$

Functions $P_4(x)$ and f(x) evaluated at various values of x:

	$P_4(x)$ Approximation	Exact
x	$1 + 3x + 9x^2 + 27x^3 + 81x^4$	$f(x) = \frac{1}{1 - 3x}$
-0.1		0.76923
-0.01		0.97087
0	1	1
0.01		1.0309
0.1		1.0309

Define $Y_1 = 1 + 3X$, $Y_2 = Y_1 + 9X^2$, $Y_3 = Y_2 + 27X^3$, $Y_3 = Y_3 + 81X^4$, $Y_4 = \frac{1}{1 - 3x}$ 2nd TBLSET -1 1 Ask Auto 2nd TABLE, type -0.1 -0.01 0 0.01 0.1

5. Application. Electric potential, V, at a distance z from disk R is

$$V = k_1 \left(\sqrt{z^2 + R^2} - z \right).$$

(a) If z is much larger than R, both $\frac{R}{z}$ and $\frac{R^2}{z^2}$ are small; so $x = \frac{R^2}{z^2}$ is close to zero and

$$\sqrt{z^2 + R^2} = \sqrt{z^2 \left(1 + \frac{R^2}{z^2}\right)} = z\sqrt{1 + \frac{R^2}{z^2}} = z\sqrt{1 + x}$$

and a Taylor polynomial of degree 1 for $f(x) = \sqrt{1+x}$ at x = 0 is

$$P_1(x) = f(0) + \frac{f^{(1)}(0)}{1!}x = \sqrt{1+0} + \frac{\frac{1}{2}(1+0)^{-\frac{1}{2}}}{1!}x =$$

(i)
$$1 + \frac{1}{2}x$$
 (ii) $1 + \frac{1}{2}x - \frac{1}{8}x^2$ (iii) $1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{6}x^3$

SO

$$z\sqrt{1+x}pprox$$
 (i) $z\left(1+rac{1}{2}x
ight)$ (ii) $z\left(1+rac{1}{2}x-rac{1}{8}x^2
ight)$ (iii) $\left(1+rac{1}{2}x-rac{1}{8}x^2+rac{1}{6}x^3
ight)$

and so

$$V = k_1 \left(\sqrt{z^2 + R^2} - z \right)$$

$$= k_1 \left(z \sqrt{1 + x} - z \right) \quad \text{remember } x = \frac{R^2}{z^2}$$

$$\approx k_1 \left(z \left(1 + \frac{1}{2} x \right) - z \right)$$

$$= k_1 \left(z + \frac{z}{2} x - z \right) =$$

(i)
$$\frac{k_1R}{2z}$$
 (ii) $k_1\left(R+\frac{z^2}{2R}-z\right)$ (iii) $\frac{k_1R^2}{2z}$ remember $x=\frac{R^2}{z^2}$

(b) If z is much smaller than R, both $\frac{z}{R}$ and $\frac{z^2}{R^2}$ are small; so $x = \frac{z^2}{R^2}$ is close to zero and

$$\sqrt{z^2 + R^2} = \sqrt{R^2 \left(\frac{z^2}{R^2} + 1\right)} = R\sqrt{1 + \frac{z^2}{R^2}} = z\sqrt{1 + x}$$

and a Taylor polynomial of degree 1 for $f(x) = \sqrt{1+x}$ at x = 0 is

$$P_1(x) = f(0) + \frac{f^{(1)}(0)}{1!}x = \sqrt{1+0} + \frac{\frac{1}{2}(1+0)^{-\frac{1}{2}}}{1!}x =$$

(i)
$$1 + \frac{1}{2}x$$
 (ii) $1 + \frac{1}{2}x - \frac{1}{8}x^2$ (iii) $1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{6}x^3$

SO

$$z\sqrt{1+x} \approx$$

(i)
$$z\left(1+\frac{1}{2}x\right)$$
 (ii) $z\left(1+\frac{1}{2}x-\frac{1}{8}x^2\right)$ (iii) $\left(1+\frac{1}{2}x-\frac{1}{8}x^2+\frac{1}{6}x^3\right)$

and so

$$V = k_1 \left(\sqrt{z^2 + R^2} - z \right)$$

$$= k_1 \left(R\sqrt{1 + x} - z \right) \quad \text{remember } x = \frac{R^2}{z^2}$$

$$\approx k_1 \left(R \left(1 + \frac{1}{2} x \right) - z \right)$$
$$= k_1 \left(R + \frac{R}{2} x - z \right) =$$

(i)
$$\frac{k_1R}{2z}$$
 (ii) $k_1\left(R+\frac{z^2}{2R}-z\right)$ (iii) $\frac{k_1R^2}{2z}$ remember $x=\frac{z^2}{R^2}$

12.4 Infinite Series

An *infinite series* is

$$a_1 + a_2 + a_3 + \dots + a_n \dots = \sum_{i=1}^{\infty} a_i$$

and let $S_n = a_1 + a_2 + a_3 + \cdots + a_n$ be the *n*th partial sum and suppose

$$\lim_{n \to \infty} S_n = L$$

for some real number L. Then L is the *sum of the infinite series* and the infinite series *converges*. If L does not exist, the series *diverges*. In particular, the *sum of the geometric series* is

$$\sum_{i=1}^{\infty} ar^{i-1} = a + ar + ar^2 + ar^3 + \cdots$$

which *converges* if r is in (-1,1) and has sum

$$\frac{a}{1-r}$$

and diverges if r is outside of (-1, 1).

Exercise 12.4 (Infinite Series)

- 1. Identify if geometric series converges or not; give sum of convergent series.
 - (a) geometric sequence

$$16, 8, 4, 2, \dots$$

has common ratio r= (i) $\frac{1}{2}$ (ii) $\frac{1}{3}$ (iii) $\frac{1}{4}$ which is inside (-1,1) notice $r=\frac{8}{16}=\frac{4}{8}=\frac{2}{4}=0.5$

and so (i) is (ii) is not a convergent geometric series

and so

$$\lim_{n \to \infty} S_n = \frac{a}{1 - r} = \frac{16}{1 - \frac{1}{2}} =$$

- (i) 30 (ii) 31 (iii) 32 (iv) does not exist
- (b) geometric sequence

$$2, 6, 18, 54, \ldots$$

has common ratio r= (i) $\frac{1}{3}$ (ii) 2 (iii) 3 which is outside (-1,1) notice $r=\frac{6}{2}=\frac{18}{6}=\frac{54}{18}$

and so (i) is (ii) is not a convergent geometric series

and so

$$\lim_{n \to \infty} S_n = \frac{a}{1-r} = \frac{2}{1-3} =$$

- (i) -16 (ii) -32 (iii) 0 (iv) does not exist
- (c) geometric sequence

$$-3, -1, -\frac{1}{3}, -\frac{1}{9}, \dots$$

has common ratio r= (i) $\frac{1}{3}$ (ii) 2 (iii) 3 which is inside (-1,1) notice $r=\frac{-1}{-3}=\frac{1}{3}$

and so (i) is (ii) is not a convergent geometric series

where

$$\lim_{n \to \infty} S_n = \frac{a}{1 - r} = \frac{-3}{1 - \frac{1}{3}} =$$

- (i) $-\frac{7}{2}$ (ii) -4 (iii) $-\frac{9}{2}$ (iv) does not exist
- (d) geometric sequence

$$1, \frac{1}{2.02}, \frac{1}{2.02^2}, \frac{1}{2.02^3} \dots$$

has common ratio r= (i) $\frac{1}{2.01}$ (ii) $\frac{1}{2.02}$ (iii) $\frac{1}{2.03}$ which is inside (-1,1) notice $r=\frac{1}{2.02}=\frac{1}{2.02}$

and so (i) is (ii) is not a convergent geometric series

and so

$$\lim_{n \to \infty} S_n = \frac{a}{1 - r} = \frac{1}{1 - \frac{1}{2 \cdot 02}} =$$

(i) $\frac{101}{51}$ (ii) $\frac{202}{51}$ (iii) $\frac{303}{51}$ (iv) does not exist

(e) geometric sequence

$$\pi, 1, \frac{1}{\pi}, \frac{1}{\pi^2}, \dots$$

has common ratio r= (i) $\frac{1}{\pi}$ (ii) $\frac{1}{\pi^2}$ (iii) $\frac{1}{\pi^3}$ which is inside (-1,1)

and so (i) is (ii) is not a convergent geometric series

and so

$$\lim_{n \to \infty} S_n = \frac{a}{1 - r} = \frac{\pi}{1 - \frac{1}{\pi}} \approx$$

- (ii) **4.709** (iii) **4.809** (iv) does not exist (i) **4.609**
- (f) geometric sequence

$$0.197, 0.197 \left(\frac{1}{1000}\right), 0.197 \left(\frac{1}{1000}\right)^2, 0.197 \left(\frac{1}{1000}\right)^3, \dots$$

has common ratio r= (i) $\frac{1}{10}$ (ii) $\frac{1}{100}$ (iii) $\frac{1}{1000}$ which is inside (-1,1)

and so (i) is (ii) is not a convergent geometric series

and so

$$\lim_{n \to \infty} S_n = \frac{a}{1 - r} = \frac{0.197}{1 - \frac{1}{1000}} \approx$$

- (iv) does not exist
- 2. Given nth term of (non-geometric) sequence, find four terms and partial sums.

(a)
$$a_n = \frac{1}{2n-1}$$

sequence is

$$a_1, a_2, a_3, a_4 =$$

(i)
$$\mathbf{1}, \frac{1}{4}, \frac{1}{5}, \frac{1}{7}$$
 (ii) $\mathbf{1}, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}$ (iii) $\mathbf{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}$
2nd LIST OPS $\operatorname{seq}\left(\frac{1}{2X-1}, X, 1, 4\right)$, then MATH ENTER for fractions; notice non-geometric sequence because $\frac{1}{3} \neq \frac{1}{2}$

and series is

$$S_1, S_2, S_3, S_4 =$$

(i)
$$1, \frac{4}{3}, \frac{24}{15}, \frac{176}{105}$$
 (ii) $1, \frac{4}{3}, \frac{23}{15}, \frac{176}{105}$ (iii) $1, \frac{4}{3}, \frac{23}{15}, \frac{177}{105}$
 $S_1 = a_1 = 1, S_2 = S_1 + a_2 = 1 + \frac{1}{3} = \frac{4}{3}, \dots$

(b)
$$a_n = \frac{1}{(n+1)^2}$$

sequence is

$$a_1, a_2, a_3, a_4 =$$

(i)
$$\frac{1}{2}$$
, $\frac{1}{9}$, $\frac{1}{16}$, $\frac{1}{23}$ (ii) $\frac{1}{3}$, $\frac{1}{9}$, $\frac{1}{16}$, $\frac{1}{24}$ (iii) $\frac{1}{4}$, $\frac{1}{9}$, $\frac{1}{16}$, $\frac{1}{25}$
2nd LIST OPS seq $\left(\frac{1}{(X+1)^2}, X, 1, 4\right)$, then MATH ENTER for fractions; notice non-geometric sequence because $\frac{1}{9} \neq \frac{1}{16}$

and series is

$$S_{1}, S_{2}, S_{3}, S_{4} =$$
(i) $\frac{1}{4}, \frac{13}{36}, \frac{97}{144}, \frac{2567}{3600}$ (ii) $\frac{1}{4}, \frac{13}{36}, \frac{97}{144}, \frac{2568}{3600}$ (iii) $\frac{1}{4}, \frac{13}{36}, \frac{61}{144}, \frac{1669}{3600}$

$$S_{1} = a_{1} = \frac{1}{4}, S_{2} = S_{1} + a_{2} = \frac{1}{4} + \frac{1}{9} = \frac{13}{36}, \dots$$

3. Application: Bouncing ball. A ball dropped from a height of 20 meters bounces to $\frac{3}{8}$ ths of its previous height. How far does the ball travel before coming to a rest?

This geometric sequence has common ratio $r=(\mathrm{i})~\frac{2}{8}~(\mathrm{ii})~\frac{3}{8}~(\mathrm{iii})~\frac{4}{8}$ which is inside (-1,1)

and so (i) is (ii) is not a convergent geometric series

and so

$$\lim_{n \to \infty} S_n = \frac{a}{1 - r} = \frac{20}{1 - \frac{3}{8}} =$$

(i) 30 (ii) 31 (iii) 32 (iv) does not exist meters

12.5 Taylor Series

The Taylor series for differentiable function f at x = 0 is

$$f(0) + \frac{f^{(1)}(0)}{1!}x + \frac{f^{(2)}(0)}{2!}x^2 + \frac{f^{(3)}(0)}{3!}x^3 + \cdots$$

Some analytic functions f(x), Taylor series and interval of convergences are:

•
$$f(x) = e^x$$
, $1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \dots + \frac{1}{n!}x^n + \dots$, $(-\infty, \infty)$

•
$$f(x) = \ln(1+x)$$
, $x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + \frac{(-1)^n x^{n+1}}{n+1} + \dots$, $(-1, 1]$

•
$$f(x) = \frac{1}{1-x}$$
, $1 + x + x^2 + x^3 + \dots + x^n + \dots$, $(-1, 1)$

Let f and g be functions with Taylor series

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + \dots$$

$$g(x) = b_0 + b_1 x + b_2 x^2 + b_3 x^3 + \dots + b_n x^n + \dots$$

and so Taylor series of

• f + g is

$$(a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 + (a_3 + b_3)x^3 + \dots + (a_n + b_n)x^n + \dots$$

• $c \cdot f(x)$ is

$$c \cdot a_0 + c \cdot a_1 x + c \cdot a_2 x^2 + c \cdot a_3 x^3 + \dots + c \cdot a_n x^n + \dots$$

• $x^k \cdot f(x)$ is

$$a_0x^k + a_1x^k \cdot x + a_2x^k \cdot x^2 + a_3x^k \cdot x^3 + \dots + a_nx^k \cdot x^n + \dots$$

= $a_0x^k + a_1x^{k+1} + a_2x^{k+2} + a_3x^{k+3} + \dots + a_nx^{k+n} + \dots$

• composition f[g(x)], where $g(x) = cx^k$, is

$$a_0 + a_1[g(x)] + a_2[g(x)]^2 + a_3[g(x)]^3 + \dots + a_n[g(x)]^n + \dots$$

Taylor series of function is limit of Taylor polynomials of function; Taylor polynomial is an finite number of initial terms of Taylor series.

Exercise 12.5 (Taylor Series)

1. Determine Taylor series for f(x) and interval of convergence.

(a)
$$f(x) = \frac{3}{1-x}$$

Since Taylor series of $\frac{1}{1-x}$ is

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + \dots$$

then Taylor series of

$$f(x) = 3 \cdot \frac{1}{1-x}$$

= $3(1+x+x^2+x^3+\cdots+x^n+\cdots) =$

(i)
$$3 + 3x + 3x^2 + 3x^3 + \cdots + 3x^n + \cdots$$

(ii)
$$1 + 3x + 3x^2 + 3x^3 + \cdots + 3x^n + \cdots$$

(iii)
$$1 + x + 2x^2 + 3x^3 + \cdots + nx^n + \cdots$$

where since

$$-1 < x < 1$$
,

the interval of convergence for x is

(i)
$$(-\infty, \infty)$$
 (ii) $(-1, 1)$ (iii) $(-3, 3)$

(b)
$$f(x) = \frac{3}{1-x^2}$$

Since Taylor series of $\frac{1}{1-x}$ is

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + \dots$$

then Taylor series of

$$f(x) = 3 \cdot \frac{1}{1 - x^2}$$

= $3\left(1 + x^2 + \left(x^2\right)^2 + \left(x^2\right)^3 + \dots + \left(x^2\right)^n + \dots\right) = 0$

(i)
$$3 + 3x + 3x^2 + 3x^3 + \dots + 3x^n + \dots$$

(ii)
$$3 + 3x^2 + 3x^4 + 3x^6 + \dots + 3x^{2n} + \dots$$

(iii)
$$1 + x^3 + 2x^4 + 3x^6 + \cdots + nx^{2n} + \cdots$$

where since

$$-1 < x^2 < 1 \equiv 0 < x^2 \le 1$$

the interval of convergence for x (not x^2) is

(i)
$$(-\infty, \infty)$$
 (ii) $(-1, 1)$ (iii) $(-\sqrt{2}, \sqrt{2})$

(c)
$$f(x) = e^{3x^2}$$

Since Taylor series of e^x is

$$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \dots + \frac{1}{n!}x^{n} + \dots$$

then Taylor series of

$$f(x) = e^{3x^2}$$

$$= 1 + 3x^2 + \frac{1}{2!} (3x^2)^2 + \frac{1}{3!} (3x^2)^3 + \dots + \frac{1}{n!} (3x^2)^n + \dots = \frac$$

(i)
$$\frac{3^2}{2!}x^4 + \frac{3^3}{3!}x^6 + \frac{3^4}{4!}x^6 + \dots + \frac{3^n}{n!}x^{2n} + \dots$$

(ii)
$$1 + \frac{3^2}{2!}x^2 + \frac{3^3}{3!}x^6 + \frac{3^4}{4!}x^6 + \dots + \frac{3^n}{n!}x^{2n} + \dots$$

$$\begin{array}{l} \text{(i)} \ \frac{3^2}{2!} x^4 + \frac{3^3}{3!} x^6 + \frac{3^4}{4!} x^6 + \dots + \frac{3^n}{n!} x^{2n} + \dots \\ \text{(ii)} \ 1 + \frac{3^2}{2!} x^2 + \frac{3^3}{3!} x^6 + \frac{3^4}{4!} x^6 + \dots + \frac{3^n}{n!} x^{2n} + \dots \\ \text{(iii)} \ 1 + 3 x^2 + \frac{3^2}{2!} x^4 + \frac{3^3}{3!} x^6 + \frac{3^4}{4!} x^6 + \dots + \frac{3^n}{n!} x^{2n} + \dots \end{array}$$

where since

$$-\infty < 3x^2 < \infty$$
,

the interval of convergence for x is

(i)
$$(-\infty, \infty)$$
 (ii) $(-1, 1)$ (iii) $(-\sqrt{2}, \sqrt{2})$

(d)
$$f(x) = \frac{e^{2x} + e^{-2x}}{2} = \frac{1}{2}e^{2x} + \frac{1}{2}e^{-2x}$$

Since Taylor series of e^x is

$$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \dots + \frac{1}{n!}x^{n} + \dots$$

then Taylor series of

$$f(x) = \frac{1}{2}e^{2x} + \frac{1}{2}e^{-2x}$$

$$= \frac{1}{2}\left(1 + 2x + \frac{1}{2!}(2x)^2 + \frac{1}{3!}(2x)^3 + \dots + \frac{1}{n!}(2x)^n + \dots\right)$$

$$+ \frac{1}{2}\left(1 - 2x + \frac{1}{2!}(-2x)^2 + \frac{1}{3!}(-2x)^3 + \dots + \frac{1}{n!}(-2x)^n + \dots\right)$$

$$= \left(\frac{1}{2} + \frac{1}{2}\right) + \frac{1}{2}(2x - 2x) + \frac{1}{2 \cdot 2!}\left(2^2x^2 + (-2)^2x^2\right)$$

$$+ \frac{1}{2 \cdot 3!}\left(2^3x^3 + (-2)^3x^3\right) + \frac{1}{2 \cdot 4!}\left(2^4x^4 + (-2)^4x^4\right) + \dots$$

(i)
$$1 + \frac{2^2}{2!}x^2 + \frac{2^4}{4!}x^4 + \dots + \frac{2^n}{n!}x^{2n} + \dots$$

$$\begin{array}{l} \text{(i)} \ 1 + \frac{2^2}{2!} x^2 + \frac{2^4}{4!} x^4 + \dots + \frac{2^n}{n!} x^{2n} + \dots \\ \text{(ii)} \ 1 + x + \frac{2^2}{2!} x^2 + \frac{2^3}{3!} x^3 + \frac{2^4}{4!} x^4 + \dots + \frac{2^n}{n!} x^n + \dots \\ \text{(iii)} \ 1 + \frac{3^2}{2!} x^4 + \frac{3^3}{3!} x^6 + \frac{3^4}{4!} x^6 + \dots + \frac{3^n}{n!} x^{2n} + \dots \end{array}$$

(iii)
$$1 + \frac{3^2}{2!}x^4 + \frac{3^3}{3!}x^6 + \frac{3^4}{4!}x^6 + \dots + \frac{3^n}{n!}x^{2n} + \dots$$

where since

$$-\infty < 2x < \infty, \quad -\infty < -2x < \infty,$$

the interval of convergence for x is

(i)
$$(-\infty, \infty)$$
 (ii) $(-1, 1)$ (iii) $(-\sqrt{2}, \sqrt{2})$

(e)
$$f(x) = \ln(1+3x^2)$$

Since Taylor series of ln(1+x) is

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + \frac{(-1)^n x^{n+1}}{n+1} + \dots$$

then Taylor series of

$$f(x) = \ln(1+3x^2)$$

$$= 3x^2 - \frac{(3x^2)^2}{2} + \frac{(3x^2)^3}{3} - \frac{(3x^2)^4}{4} + \dots + \frac{(-1)^n (3x^2)^{n+1}}{n+1} + \dots = \frac{(-1)^n (3x^2)^{n+1}}{$$

(i)
$$3x^2 - \frac{3x^2}{2} + \frac{(3x^2)^3}{3} - \frac{(3x^2)^4}{4} + \dots + \frac{(-1)^n(3x^2)^{n+1}}{n+1} + \dots$$

(ii)
$$3x^2 - \frac{9x^4}{2} + \frac{27x^6}{3} - \frac{81x^8}{4} + \dots + \frac{(-1)^n 3^{n+1} x^{2n+2}}{n+1} + \dots$$

$$\begin{array}{l} \text{(i) } 3x^2 - \frac{3x^2}{2} + \frac{\left(3x^2\right)^3}{3} - \frac{\left(3x^2\right)^4}{4} + \dots + \frac{(-1)^n \left(3x^2\right)^{n+1}}{n+1} + \dots \\ \text{(ii) } 3x^2 - \frac{9x^4}{2} + \frac{27x^6}{3} - \frac{81x^8}{4} + \dots + \frac{(-1)^n 3^{n+1}x^{2n+2}}{n+1} + \dots \\ \text{(iii) } 3x - \frac{\left(3x^2\right)^2}{2} + \frac{\left(3x^2\right)^3}{3} - \frac{\left(3x^2\right)^4}{4} + \dots + \frac{(-1)^n \left(3x^2\right)^{n+1}}{n+1} + \dots \end{array}$$

where since

$$-1 < 3x^2 \le 1 \quad \equiv \quad -\frac{1}{3} < x^2 \le \frac{1}{3} \quad \equiv \quad 0 < x^2 \le \frac{1}{3},$$

the interval of convergence for
$$x$$
 is (i) $\left[-\frac{1}{3},\frac{1}{3}\right]$ (ii) $\left[\sqrt{-\frac{1}{3}},\sqrt{\frac{1}{3}}\right]$ (iii) $\left[-\sqrt{\frac{1}{3}},\sqrt{\frac{1}{3}}\right]$

2. Application: normal density. Density of IQ scores for 16 year olds, x:

$$f(x) = \frac{1}{16\sqrt{2\pi}}e^{-(1/2)[(x-100)/16]^2}.$$

Use four terms of Taylor series to determine P(84 < X < 100)

(a) Taylor series.

Since Taylor series of e^x is

$$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \dots + \frac{1}{n!}x^{n} + \dots$$

then Taylor series of

$$f(x) = \frac{1}{16\sqrt{2\pi}}e^{-(1/2)[(x-100)/16]^2}$$

$$= \frac{1}{16\sqrt{2\pi}}\left(1 - \frac{1}{2}\left(\frac{x-100}{16}\right)^2 + \frac{1}{2!}\left(-\frac{1}{2}\left(\frac{x-100}{16}\right)^2\right)^2 + \frac{1}{3!}\left(-\frac{1}{2}\left(\frac{x-100}{16}\right)^2\right)^3 + \cdots\right) =$$

(i)
$$1 - \frac{1}{2} \left(\frac{x-100}{16}\right)^2 + \left(\frac{1}{2} \left(\frac{x-100}{16}\right)^2\right)^2 + \frac{1}{3!} \left(\frac{1}{2} \left(\frac{x-100}{16}\right)^2\right)^3 + \cdots$$

(ii) $\frac{1}{16\sqrt{2\pi}} \left(1 - \frac{1}{2} \left(\frac{x-100}{16}\right)^2 + \left(\frac{1}{2} \left(\frac{x-100}{16}\right)^2\right)^2 + \frac{1}{3!} \left(\frac{1}{2} \left(\frac{x-100}{16}\right)^2\right)^3 + \cdots\right)$
(iii) $\frac{1}{16\sqrt{2\pi}} \left(1 - \frac{1}{2} \left(\frac{x-100}{16}\right)^2 + \frac{1}{8} \left(\frac{x-100}{16}\right)^4 - \frac{1}{48} \left(\frac{x-100}{16}\right)^6 + \cdots\right)$

(b) P(84 < X < 100) using Taylor series

$$\begin{split} P(84 < X < 100) &= \frac{1}{16\sqrt{2\pi}} \int_{84}^{100} e^{-(1/2)[(x-100)/16]^2} \, dx \\ &\approx \frac{1}{16\sqrt{2\pi}} \int_{84}^{100} \left(1 - \frac{1}{2} \left(\frac{x-100}{16}\right)^2 + \frac{1}{8} \left(\frac{x-100}{16}\right)^4 - \frac{1}{48} \left(\frac{x-100}{16}\right)^6\right) \, dx \\ &= \frac{1}{16\sqrt{2\pi}} \int_{84}^{100} \left(1 - \frac{1}{2 \cdot 16^2} (x-100)^2 + \frac{1}{8 \cdot 16^4} (x-100)^4 - \frac{1}{48 \cdot 16^6} (x-100)^6\right) \, dx \\ &= \frac{1}{16\sqrt{2\pi}} \left(x - \frac{1}{2 \cdot 16^2 \cdot 3} (x-100)^3 + \frac{1}{8 \cdot 16^4 \cdot 5} (x-100)^5 - \frac{1}{48 \cdot 16^6 \cdot 7} (x-100)^7\right)_{x=84}^{x=100} \\ &= \frac{1}{16\sqrt{2\pi}} \left(100 - \frac{1}{2 \cdot 16^2 \cdot 3} (100-100)^3 + \frac{1}{8 \cdot 16^4 \cdot 5} (100-100)^5 - \frac{1}{48 \cdot 16^6 \cdot 7} (100-100)^7\right) \\ &- \frac{1}{16\sqrt{2\pi}} \left(84 - \frac{1}{2 \cdot 16^2 \cdot 3} (84-100)^3 + \frac{1}{8 \cdot 16^4 \cdot 5} (84-100)^5 - \frac{1}{48 \cdot 16^6 \cdot 7} (84-100)^7\right) \\ &= \frac{1}{16\sqrt{2\pi}} \left(16 + \frac{1}{2 \cdot 16^2 \cdot 3} (84-100)^3 - \frac{1}{8 \cdot 16^4 \cdot 5} (84-100)^5 + \frac{1}{48 \cdot 16^6 \cdot 7} (84-100)^7\right) \\ &= \frac{1}{16\sqrt{2\pi}} \left(16 - \frac{16^3}{2 \cdot 16^2 \cdot 3} + \frac{16^5}{8 \cdot 16^4 \cdot 5} - \frac{16^7}{48 \cdot 16^6 \cdot 7}\right) \\ &= \frac{1}{\sqrt{2\pi}} \left(1 - \frac{1}{2 \cdot 3} + \frac{1}{8 \cdot 5} - \frac{1}{48 \cdot 7}\right) \end{split}$$

- (i) $\mathbf{0.3411}$ (ii) $\mathbf{0.3412}$ (iii) $\mathbf{0.3413}$ (iv) $\mathbf{0.5413}$.
- (c) P(84 < X < 100) using calculator

$$P(84 < X < 100) =$$

(i) **0.3411** (ii) **0.3412** (iii) **0.3413** (iv) **0.5413**. (2nd DISTR 2:normalcdf(84, 100, 200, 16).