2.4 Exponential Functions

An exponential function is given by

$$f(x) = a^x$$

where x is any real number, a > 0 and $a \neq 1$. If base $a = e \approx 2.718$, the exponential function becomes the (natural) exponential function, $f(x) = e^x$. Related to this, as m gets larger, $(1 + \frac{1}{m})^m$ approaches e.

Exponential functions are used in financial formulas. If principal (present value) amount P is invested at interest rate r per year over time t, simple interest, I, is I = Prt. If P is invested at interest rate r per year, compounded m times per year for t years, compound amount is

$$A = P\left(1 + \frac{r}{m}\right)^{mt}.$$

If interest rate r is compounded *continuously*, compound amount after t years is

$$A = Pe^{rt}$$
.

Exercise 2.4 (Exponential functions)

1. Properties of exponential functions.

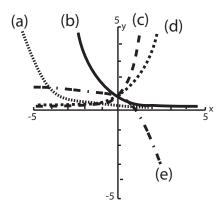


Figure 2.11 (Various Exponential Functions)

(Use WINDOW -5 5 1 -5 5 1 1)

- (a) Exponential function $f(x) = 2^x$ corresponds to graph (i) (a) (ii) (b) (iii) (c) (iv) (d) (v) (e)
- (b) Exponential function $f(x) = 3^x$ corresponds to graph (i) (a) (ii) (b) (iii) (c) (iv) (d) (v) (e) $f(x) = 3^x$ increases more rapidly than $f(x) = 2^x$.

- 59
- (c) Exponential function $f(x) = 0.5^x$ corresponds to graph (i) (a) (ii) (b) (iii) (c) (iv) (d) (v) (e) $f(x) = 0.5^x = \left(\frac{1}{2}\right)^x = \frac{1^x}{2^x} = \frac{1}{2^x} = 2^{-x} = f(-x)$, which is reflection in y-axis to $f(x) = 2^x$.
- (d) Exponential function $f(x) = 2^{-x-4}$ corresponds to graph (i) (a) (ii) (b) (iii) (c) (iv) (d) (v) (e) $f(x) = 2^{-x-4} = 2^{-(x+4)} = f(-(x+4))$, which a left translation 4 units from $f(-x) = 2^{-x}$.
- (e) Exponential function $f(x) = -2^x + 2$ corresponds to graph (i) (a) (ii) (b) (iii) (c) (iv) (d) (v) (e) $-f(x) = -2^x$ is a reflection of $f(x) = 2^x$ in x-axis and -f(x) + 2 is a translation up 2 units.
- 2. Exponential function applications: radioactive decay. Quantity (in ounces) present at time t (in years) is

$$Q(t) = 500(5^{-0.2t})$$

- (a) Quantity left in t = 8 years is approximately
 - (i) **28** (ii) **38** (iii) **48** ounces.

Calculator: $500 * (5 \land (-0.2 * 8))$

- (b) Length of time until quantity reduces to 10 ounces:
 - (i) **12.12** (ii) **12.34** (iii) **12.67** years.

Calculator: Type $500 * (5 \land (-0.2 * X))$ into Y=, set WINDOW 0 30 1 0 500 1 1,

GRAPH, TRACE, arrow close to Y= 10. Later, we will use logarithms to solve this sort of question.

- 3. Compound Interest: $A = P\left(1 + \frac{r}{m}\right)^{mt}$.
 - (a) If \$700 is invested at 11% interest compounded yearly (or annually), calculate its value after 8 years.

$$A = P\left(1 + \frac{r}{m}\right)^{mt} = 700\left(1 + \frac{0.11}{1}\right)^{1(8)} = 1513.18 / 1613.18 / 1713.18$$

(b) If \$700 is invested at 11% interest compounded monthly, calculate its value after 8 years.

$$A = P\left(1 + \frac{r}{m}\right)^{mt} = 700\left(1 + \frac{0.11}{12}\right)^{(12)8} = 1580.88 / 1680.88 / 1780.88$$

- 4. Compound interest: related questions.
 - (a) Interest rate, r?
 - i. If A = 700, P = 15, t = 10 years, interest compounded yearly Since $A = P\left(1 + \frac{r}{m}\right)^{mt}$, then $700 = 15\left(1 + \frac{r}{1}\right)^{1(10)}$ or $(1+r)^{10} = \frac{700}{15}$ or taking tenth root of both sides, $1 + r = \left(\frac{700}{15}\right)^{1/10}$ or $r = \left(\frac{700}{15}\right)^{1/10} - 1 \approx \mathbf{0.15} / \mathbf{0.39} / \mathbf{0.47}$.

$$1 + r = \left(\frac{700}{15}\right)^{1/10}$$
 or $r = \left(\frac{700}{15}\right)^{1/10} - 1 \approx \mathbf{0.15} / \mathbf{0.39} / \mathbf{0.47}$
Calculator: $(700/15) \land (0.1) - 1$

- ii. If A = 700, P = 15, t = 10 years, interest compounded monthly Since $A = P\left(1 + \frac{r}{m}\right)^{mt}$, $700 = 15\left(1 + \frac{r}{12}\right)^{12(10)}$ or $\left(1 + \frac{r}{12}\right)^{120} = \frac{700}{15}$ or taking 120th root of both sides, $1 + \frac{r}{12} = \left(\frac{700}{15}\right)^{1/120} \text{ or } r = 12\left(\left(\frac{700}{15}\right)^{1/120} 1\right) \approx \textbf{0.15} \ / \ \textbf{0.39} \ / \ \textbf{0.47}.$ Calculator: $12*((700/15) \land (1/120) 1)$
- (b) Principal, P?
 - i. If $A=700,\,t=5$ years, r=0.08 interest compounded yearly Since $A=P\left(1+\frac{r}{m}\right)^{mt},\,700=P\left(1+\frac{0.08}{1}\right)^{1(5)}$ or $P=700(1+0.08)^{-5}\approx \mathbf{476.41}\ /\ \mathbf{500.00}\ /\ \mathbf{528.89}.$ Calculator: $700*1.08 \land (-5)$
 - ii. If A=700, t=5 years, r=0.08 interest compounded monthly Since $A=P\left(1+\frac{r}{m}\right)^{mt}$, $700=P\left(1+\frac{0.08}{12}\right)^{12(5)}$ or $P=700\left(1+\frac{0.08}{12}\right)^{-60}\approx \mathbf{469.85} \ / \ \mathbf{499.00} \ / \ \mathbf{518.89}$. Calculator: $700*(1+0.08/12) \land (-60)$
- 5. Compound interest (continuously): $A = Pe^{rt}$
 - (a) If \$700 is invested at 11% interest compounded continuously, calculate its value after 8 years. $A = Pe^{rt} = 700e^{0.11(8)} = \mathbf{1687.63} \ / \ \mathbf{1967.36} \ / \ \mathbf{2267.36}.$
 - (b) An amount \$700 invested at 11% interest compounded annually (\$1613.18) is less / greater than \$700 invested at 11% interest compounded monthly (\$1680.88) is less / greater than \$700 invested at 11% interest compounded continuously (\$1687.63) after 8 years.

2.5 Logarithmic Functions

Logarithmic functions are related to exponential functions. Assume $a>0,\,a\neq 1$ and x>0

$$y = \log_a x$$
 if and only if $a^y = x$ (or $a^y - x = 0$)

where " $\log_a x$ " is read "logarithm of x to the base a". If base a=e, the logarithmic function becomes the (natural) logarithmic function, $f(x)=\log_e x=\ln x$; if base a=10, the logarithmic function becomes the (common) logarithmic function, $f(x)=\log_{10} x=\log_{10} x$. For any positive x,y and $a,a\neq 1$, and any real number r,

• $\log_a xy = \log_a x + \log_a y$

- $\log_a\left(\frac{x}{y}\right) = \log_a x \log_a y$
- $\log_a x^r = r \log_a x$

Also, $\log_a a = 1$, $\log_a 1 = 0$ and $\log_a a^r = r$. The change-of-base theorem for logarithms

$$\log_a x = \frac{\log_b x}{\log_b a} = \frac{\ln x}{\ln a}$$

and change-of-base theorem for exponentials is

$$a^x = e^{(\ln a)x}$$

Exercise 2.5 (Logarithmic Functions)

1. Graphs of Logarithmic Functions. Consider the following graphs of various logarithm functions.

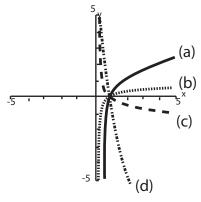


Figure 2.12 (Various Logarithmic Functions)

(Calculator: Use WINDOW -5 5 1 -5 5 1 1)

- (a) Logarithm function $f(x) = \log_2 x$ corresponds to graph (i) (a) (ii) (b) (iii) (c) (iv) (d) Use change-of-base theorem: for $f(x) = \log_2 x$, type $\ln(X)/\ln(2)$ into Y=, then GRAPH or your calculator may have MATH logBASE 2 X ENTER
- (b) Logarithm function $f(x) = \log_3 x$ corresponds to graph (i) (a) (ii) (b) (iii) (c) (iv) (d) Type $\ln(X)/\ln(3)$ into Y=, then GRAPH
- (c) Logarithm function $f(x) = \log_{0.9} x$ corresponds to graph (i) (a) (ii) (b) (iii) (c) (iv) (d)

 Type $\ln(X)/\ln(0.9)$ into Y=, then GRAPH

- (d) Logarithm function $f(x) = \log_{0.1} x$ corresponds to graph (i) (a) (ii) (b) (iii) (c) (iv) (d) Type $\ln(X)/\ln(0.1)$ into Y=, then GRAPH
- (e) In general, the x-intercept of $f(x) = \log_a x$ is (i) **0** (ii) **1** (iii) **2**.
- 2. Logarithmic function inverse of exponential function

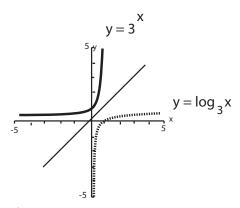


Figure 2.13 (Logarithmic Versus Exponential Function)

- (a) Functions $y = \log_3 x$ and $y = 3^x$ reflections of one another through (i) y-axis (ii) x-axis (iii) 45^o degree line.

 See figure above.
- (b) Inverse function of natural logarithmic function $y = \ln x$ is (i) $\mathbf{10}^x$ (ii) \mathbf{e}^x (iii) $\mathbf{5}^x$
- (c) Inverse function of common logarithmic function $y = \log_{10} x$ is (i) $\mathbf{10^x}$ (ii) $\mathbf{e^x}$ (iii) $\mathbf{5^x}$
- (d) Since $y = \log_a x$ means $x = a^y$, then $y = \log_{0.5} x$ means x = (circle one or more!) (i) $\left(\mathbf{0.5}\right)^y$ (ii) $\left(\frac{1}{2}\right)^y$ (iii) $\frac{1^y}{2^y}$ (iv) $\frac{1}{2^y}$ (v) $\mathbf{2}^{-y}$
- (e) $10 = \log_{0.2} x$ means x = (one or more!) (i) $(\mathbf{0.2})^y$ (ii) $(\frac{1}{5})^{10}$ (iii) $\frac{1^{10}}{5^{10}}$ (iv) $\frac{1}{5^{10}}$ (v) $\mathbf{5}^{-10}$
- (f) $2 = \log_{0.1} x$ means x = (circle one) (i) 2^{-2} (ii) $7^{-0.1}$ (iii) 10^{-2} (iv) 12^{-10}
- (g) Write $\log_4 16384 = 7$ in exponential form (i) $\mathbf{7^4} = \mathbf{16384}$ (ii) $\mathbf{4^7} = \mathbf{16384}$ (iii) $\mathbf{16384^4} = \mathbf{7}$
- (h) Write $\log 100000 = 5$ in exponential form (i) $\mathbf{100000^{10}} = \mathbf{5}$ (ii) $\mathbf{10^5} = \mathbf{100000}$ (iii) $\mathbf{5^{10}} = \mathbf{100000}$
- (i) Write $5^2 = 25$ in logarithmic form (i) $\log_5 25 = 2$ (ii) $\log_{25} 5 = 2$ (iii) $\log_2 25 = 5$

(j) Write
$$4^{-2} = \frac{1}{16}$$
 in logarithmic form (i) $\log_4 \frac{1}{16} = -2$ (ii) $\log_{-2} 4 = \frac{1}{16}$ (iii) $\log_{-2} \frac{1}{16} = 4$

3. Properties of logarithms.

(a)
$$\log_b x + \log_b y - \log_b z = (i) \log_b \frac{xy}{z}$$
 (ii) $\log_b \frac{xz}{y}$ (ii) $\log_b \frac{z}{xy}$.

(b)
$$5\log_b x - 4\log_b y = (i) \log_b \frac{5x}{4y}$$
 (ii) $\log_b \frac{x^5}{y^4}$ (iii) $\log_b \frac{y^4}{x^5}$.

(c)
$$2\log_b(x+3) - 4\log_b(x-3) =$$

(i) $\log_b \frac{2(x+3)}{4(x-3)}$ (ii) $\log_b \frac{(x+3)^2}{(x-3)^4}$ (iii) $\log_b \frac{(x-3)^2}{(x+3)^5}$.

(d)
$$\log_a a = (i) \mathbf{0}$$
 (ii) $\mathbf{1}$ (iii) \mathbf{e} .
(Hint: $\log_a a = y$ means $a^y = a$ and so $y = ?$)

(e)
$$\log_a a^k = (i) \mathbf{0}$$
 (ii) $\mathbf{1}$ (iii) \mathbf{k} .
(Hint: $\log_a a^k = y$ means $a^y = a^k$ and so $y = ?$)

(f)
$$\log_a 1 = (i) \mathbf{0}$$
 (ii) $\mathbf{1}$ (iii) \mathbf{k} .
(Hint: $\log_a 1 = y$ means $a^y = 1$ and so $y = ?$)

(g)
$$\log_a -3 =$$
 (i) $\mathbf{0}$ (ii) $\mathbf{1}$ (iii) **undefined**.
(Hint: $\log_a -3 = y$ means $a^y = -3$, $a > 0$, and so $y = ?$)

(h)
$$\ln x + \ln y = (i) \ln xy$$
 (ii) $\ln \frac{xz}{y}$ (iii) $\ln \frac{z}{xy}$.

(i)
$$5 \ln x - 4 \ln y =$$
 (i) $\ln \frac{5x}{4y}$ (ii) $\ln \frac{x^5}{y^4}$ (iii) $\ln \frac{y^4}{x^5}$

(j)
$$\ln e =$$
 (i) $\mathbf{0}$ (ii) $\mathbf{1}$ (iii) \mathbf{e} (Hint: $\ln e = \log_e e = y$ means $e^y = e$ and so $y = ?$)

(k)
$$2\log(x+3) - 4\log(x-3) =$$

(i) $\log_{10} \frac{2(x+3)}{4(x-3)}$ (ii) $\log_{10} \frac{(x+3)^2}{(x-3)^4}$ (iii) $\log_{10} \frac{(x-3)^2}{(x+3)^5}$

(l)
$$\log 10 = (i) \ \mathbf{0} \ (ii) \ \mathbf{1} \ (iii) \ \mathbf{e}$$

(Hint: $\log_{10} 10 = y \text{ means } 10^y = 10 \text{ and so } y = ?)$

4. Working with logarithmic functions. Let

$$\log_a 2 = 0.245$$
 $\log_a 7 = 0.404$

(a)
$$\log_a 14 = \text{(circle one or more)}$$

(i) $\log_a (2 \cdot 7)$ (ii) $\log_a 2 + \log_a 7$ (iii) $0.245 + 0.404 = 0.649$

(b)
$$\log_a \frac{2}{7} = \text{(circle one or more)}$$

(i) $\log_a 2 + \log_a 7$ (ii) $\log_a 2 - \log_a 7$ (iii) $0.245 - 0.404 = -0.159$

(c)
$$\log_a \frac{8}{7} = \text{(circle one or more)}$$

(i)
$$\log_a 8 - \log_a 7$$

(ii)
$$\log_a 2^3 - \log_a 7$$

(iii)
$$3\log_a 2 - \log_a 7$$

(iv)
$$3(0.245) - 0.404 = 0.331$$

```
(d) \log_a 49 = \text{(circle one or more)}
(i) \log_a 7^2 (ii) 2\log_a 7 (iii) 2(0.404) = 0.808
```

(e) $\log_a 49a = \text{(circle one or more)}$ (i) $\log_a 7^2 a$ (ii) $2 \log_a 7 + \log_a a$ (iii) 2(0.404) + 1 = 1.808

(f) $\log_a \sqrt[3]{a} = \text{(circle one or more)}$ (i) $\log_a a^{1/3}$ (ii) $\frac{1}{3} \log_a a$ (iii) $\frac{1}{3}(1) = \frac{1}{3}$

(g) $\log_a \sqrt[5]{a} = (\text{circle one})$ (i) $\frac{1}{3}$ (ii) $\frac{1}{5}$ (iii) $\frac{1}{7}$

(h) $\log_a 7^7 = (\text{circle one})$

(i) 7(0.404) = 2.828

(ii) 7(7) = 49

(iii) $7^7 = 823543$

(i)
$$\log_a 64 = \text{(circle one)}$$
 (i) $6(0.245) = 1.47$ (ii) $2(6) = 12$ (iii) $2^6 = 64$

- 5. Change-of-base for logarithms and exponentials. Evaluate to 3 decimal points of accuracy if necessary.
 - (a) $\log_{11} 345 =$ (i) **2.437** (ii) **2.447** (iii) **2.457** Since $\log_a x = \frac{\ln x}{\ln a}$, $\log_{11} 345 = \frac{\ln 345}{\ln 11}$
 - (b) $\log_{1.1} 345 = (i)$ **61.321** (ii) **61.301** (iii) **61.311** $\log_{1.1} 345 = \frac{\ln 345}{\ln 1.1}$
 - (c) Write 9^{x-4} using base e: (i) $e^{(\ln 9)(x+4)}$ (ii) $e^{(\ln 9)(x-4)}$ (ii) $e^{(9)(x-4)}$
- 6. Logarithm and exponential equations.
 - (a) Solve $\log_9 81 = y$ for y.
 - i. True / False $9^y = 81$
 - ii. True / False $(3^2)^y = 3^4$
 - iii. **True** / **False** $3^{2y} = 3^4$
 - iv. and so $y = (i) \, 4 \, (ii) \, 6$. (iii) 2
 - (b) Solve $\log_q 6 = \frac{1}{2}$ for q.
 - i. True / False $q^{1/2}=6$
 - ii. True / False $\sqrt{q} = \sqrt{36}$
 - iii. and so q = (i) 6 (ii) $\sqrt{6}$. (iii) 36
 - (c) Solve $\log(x+5)(x+1) = 1$ for x.
 - i. True / False $10^1 = (x+5)(x+1) = x^2 + 6x + 5$
 - ii. True / False $0 = x^2 + 6x 5 = (x 3)(x 2)$
 - iii. and so x = (i) 1,3 (ii) 2,4. (iii) 2,3
 - (d) Solve $\ln x + \ln 2x = -2$ for x.

i. True / False
$$\ln 2x^2 = -2$$

ii. True / False
$$e^{-2} = 2x^2$$

iii. True / False
$$\frac{1}{2}e^{-2} = x^2$$

iv. and so
$$x = (i) \frac{1}{\sqrt{2}e}$$
 (ii) $\frac{1}{2e^2}$ (iii) $\frac{2}{\sqrt{e}}$.

(e) Solve
$$21^{2x} = 27$$
 for x .

i. **True** / **False**
$$\ln 21^{2x} = \ln 27$$

ii. **True** / **False**
$$(2x) \ln 21 = \ln 27$$

iii. True / False
$$2x = \frac{\ln 27}{\ln 21}$$

iv. and so
$$x = (\text{circle one or more})$$
 (i) $\frac{1}{2} \frac{\ln 27}{\ln 21}$ (ii) **0.541** (iii) **0.675**.

(f) Solve
$$21^{2x} = 27$$
 for x .

i. True / False
$$\log_{10} 21^{2x} = \log_{10} 27$$

ii. True / False
$$(2x) \log_{10} 21 = \log_{10} 27$$

iii. True / False
$$2x = \frac{\log_{10} 27}{\log_{10} 21}$$

iv. and so
$$x = (\text{circle one or more})$$
 (i) $\frac{1}{2} \frac{\log_{10} 27}{\log_{10} 21}$ (ii) **0.541** (iii) **0.675**.

(g) Solve
$$e^{2x} = 27$$
 for x .

i. True / False
$$\ln e^{2x} = \ln 27$$

ii. True / False
$$(2x) \ln e = \ln 27$$

iii. True / False
$$2x = \frac{\ln e}{\ln 27}$$

iv. and so
$$x = (\text{circle one or more})$$
 (i) $\frac{1}{2} \cdot \ln e$ (ii) $\frac{1}{2} \cdot \frac{1}{\ln 27}$ (iii) **0.16**4

(h) Solve
$$e^{-0.02x} = 12$$
 for x .

$$x = \text{(circle one or more)}$$
 (i) $-\frac{1}{0.02} \cdot \ln e$ (ii) $-\frac{\ln 12}{0.02}$ (iii) -16.423 Since $\ln e^{-0.02x} = \ln 12$, then $-0.02x = \ln 12$, and so $x = \frac{\ln 12}{-0.02} = ?$

7. Compound interest: number of interest periods, n = mt

(a) If
$$A = 700$$
, $P = 15$, $r = 0.08$ interest compounded yearly Since $A = P\left(1 + \frac{r}{m}\right)^{mt}$, $700 = 15\left(1 + \frac{0.08}{1}\right)^{mt}$ or $(1 + 0.08)^{mt} = \frac{700}{15}$ or taking natural logs of both sides, $\ln(1 + 0.08)^{mt} = \ln\frac{700}{15}$ or $mt \ln(1 + 0.08) = \ln\frac{700}{15}$ or $n = mt = \frac{\ln\frac{700}{15}}{\ln 1.08} \approx 48 / 50 / 52$.

$$\ln(1+0.08)^{mt} = \ln \frac{700}{15}$$
 or $mt \ln(1+0.08) = \ln \frac{700}{15}$

or
$$n = mt = \frac{\ln \frac{700}{15}}{\ln 1.08} \approx 48 / 50 / 52$$

Calculator: $\ln(700/15)/\ln(1.08)$

(b) If A = 700, P = 15, r = 0.08 interest compounded monthly

If
$$A = 700$$
, $P = 15$, $r = 0.08$ interest compounded monthly Since $A = P\left(1 + \frac{r}{m}\right)^{mt}$, $700 = 15\left(1 + \frac{0.08}{12}\right)^{mt}$ or $\left(1 + \frac{0.08}{12}\right)^{mt} = \frac{700}{15}$ or taking natural logs of both sides,

$$\ln\left(1 + \frac{0.08}{12}\right)^{mt} = \ln\frac{700}{15} \text{ or } 12t\ln\left(1 + \frac{0.08}{12}\right) = \ln\frac{700}{15}$$
 or
$$n = 12t = \frac{\ln\frac{700}{15}}{\ln\left(1 + \frac{0.08}{12}\right)} \approx 563 / 578 / 589.$$

or
$$n = 12t = \frac{\ln \frac{700}{15}}{\ln(1 + \frac{9.08}{12})} \approx 563 / 578 / 589$$

Calculator: $\ln(700/15) / \ln(1 + 0.08/12)$

(c) Doubling time for compound interest: rule of 70, 72. True / False If m = 1, then $A = P\left(1 + \frac{r}{m}\right)^{mt} = P(1+r)^t$, and time to double principal when P = 1 is given by $2 = (1+r)^t$ or

$$t = \frac{\ln 2}{\ln(1+r)} \approx \frac{\ln 2}{r} \approx \frac{0.693}{r}$$
, if r is small

Specifically, if $0.001 \le r < 0.05$, doubling time is $t \approx \frac{70}{100r}$, or, if $0.05 \le r < 0.12$, doubling time is $t \approx \frac{72}{100r}$.

2.6 Applications: Growth and Decay; Mathematics of Finance

For y_0 amount present at time t=0, let amount present at time t be

$$y = y_0 e^{kt}.$$

If k > 0, then k is a growth constant and y is an exponential growth function (used in bacterial growth, for example); if k < 0, then k is a decay constant and y is an exponential decay function (used in radioactive decay, for example). In addition to this unbounded model, the limited growth model is given by

$$y = L - (L - y_0)e^{kt}$$

where k < 0 and L is a limit to growth.

Also, effective rate for compound interest is

$$r_E = \left(a + \frac{r}{m}\right)^m - 1$$

which becomes $r_E = e^r - 1$ if interest is compounded continuously.

Exercise 6.6 (Applications: Growth and Decay; Mathematics of Finance)

- 1. Biological growth function, k and t known. How many cells will there be after 10 hours, if there are an initial 5000 cells and growth rate k = 0.02?
 - (a) The y in $y = y_0 e^{kt}$ describes the (i) **cell growth rate** (ii) **initial cell count** (iii) **cell count**
 - (b) The y_0 describes initial cell count given by (i) 4 (ii) 10 ((iii) 5000
 - (c) so at t = 10, $y = 5000e^{0.02(10)} \approx$ (i) **6004** (ii) **6053** (iii) **6107**

- 2. Population decay, k and t known. How many people will there be after 10 years, if there are an initial population of 5000 people and the population decays at a rate of k = -0.02?
 - (a) The y in $y = y_0 e^{kt}$ describes the (i) population decay rate (ii) initial population (iii) population.
 - (b) The y_0 describes initial population given by (i) -0.02 (ii) 10 (iii) 5000.
 - (c) at t = 10, $y = 5000e^{-0.02(10)} \approx$ (i) **4094** (ii) **4154** (iii) **4254**.
- 3. Biological growth, k unknown and t known. If cells in a bacterial culture divide every 4 hours (cell count doubles every 4 hours), how many cells will there be after 10 hours, if there are an initial 5000 cells?
 - (a) Since $y_0 = 5000$, y = (i) **5000** e^{5000t} (ii) **5000** e^{kt} (iii) ke^{kt}
 - (b) (i) True (ii) False At t = 0, initial cell count is $P = 5000e^{k(0)} = 5000$.
 - (c) Since cell count *doubles* every t = 4 hours, at t = 4, four hours after initial count of 5000 cells, there must be (i) **2500** (ii) **25000** (iii) **10000** cells. In other words, $y = 5000e^{k(4)} = 10000$.
 - (d) Rewrite $5000e^{k(4)} = 10000$ as $e^{4k} = 2$. Taking natural logarithms of both sides, $\ln e^{4k} = \ln 2$ or $4k = \ln 2$ and so $k \approx$ (i) **0.173** (ii) **0.456**
 - (e) At t = 10, $y = 5000e^{0.173(10)} \approx$ (i) **28, 204** (ii) **29, 204** (iii) **30, 204**
- 4. Population growth, k unknown and t known. A population doubles every 25 years. If the population was 10,000 in 2000, what will it be in 2100?
 - (a) $y = y_0 e^{kt} = (i) \ \mathbf{10000} e^{\mathbf{5000} t}$ (ii) $\mathbf{10000} e^{\mathbf{k}t}$ (iii) $\mathbf{k} e^{\mathbf{k}t}$.
 - (b) (i) **True** (ii) **False** At t = 0, initial population is $y = 10000e^{k(0)} = 10000$.
 - (c) Since population doubles every t = 25 years, at t = 25, 25 years after initial count of 10000, there must be (i) **2500** (ii) **25000** (iii) **20000** people. In other words, $P = 10000e^{k(25)} = 20000$.
 - (d) Rewrite $10000e^{k(25)} = 20000$ as $e^{25k} = 2$. Taking natural logarithms of both sides, $25k = \ln 2$ and so $k = \frac{\ln 2}{25} \approx$ (i) **0.0173** (ii) **0.0277**. Notice $k = \frac{\ln 2}{25} = \frac{0.6931}{25} \approx \frac{69.31}{2500} \approx \frac{70}{2500}$ and so population doubling is an example of the *rule of 70*.
 - (e) So, at t = 2100 2000 = 100, $y = 10000e^{0.0277(100)} \approx$ (i) **158, 587** (ii) **159, 587** (iii) **200, 587**.
- 5. Radioactive decay, k unknown and t known. If the half-life of blueberrium is 745 hours, how much of 23 grams of blueberrium will be left after 1045 hours?
 - (a) Since $y_0 = 23$, $P = (i) \ \mathbf{23}e^{23t}$ (ii) $\mathbf{23}e^{-kt}$ (iii) ke^{-kt} .
 - (b) (i) True (iii) False At t = 0, $P = 23e^{-k(0)} = 23$.

- (c) Since blueberrium decreases to one–half its original amount every t = 745 hours, original 23 grams decreases to 11.5 grams and so, at t = 745, $y = 23e^{-k(745)} = (i)$ 23 (ii) 11.5 (iii) 5.75.
- (d) Rewrite $23e^{-k(745)} = 11.5$ as $e^{-745k} = 0.5$, so $\ln e^{-745k} = \ln 0.5$, or $-745k = \ln 0.5$ and so $k = \frac{\ln 0.5}{-745} \approx$ (i) **0.0009303** (ii) **0.00234**.
- (e) So, at t = 1045, $y = 23e^{-0.0009303(1045)} \approx$ (i) **7.7** (ii) **8.7** (iii) **9.7**.
- 6. Population growth, k known and t unknown. How many years will it take before a town hits a size of 1000 people, if there are an initial 400 inhabitants and k = 0.0177?
 - (a) $y = y_0 e^{kt} =$ (i) $400e^{0.0177t}$ (ii) $0.0177e^{400t}$ (iii) $400e^{400t}$
 - (b) (i) **True** (ii) **False** At t = 0, $y = 400e^{k(0)} = 400$.
 - (c) Since we are interested in when the town size hits 1000, let $y=400e^{0.0177t}=1000$, or $e^{0.0177t}=2.5$, so $\ln e^{0.0177t}=\ln 2.5$ or $0.0177t=\ln 2.5$ and so $t=\frac{\ln 2.5}{0.0177}\approx$ (i) **51.8** (ii) **83.2** (iii) **93.8** years.
- 7. Carbon dating, k and t unknown. How old is a wood building if 34% of carbon 14 is left in the wood? Assume the half-life of carbon 14 is 5570 years; that is, assume 50% of the original 100% of carbon 14 is left in the wood 5570 years after a tree dies (and is used to construct the building).
 - (a) Since $y_0 = 100\%$, $y = (i) \ \mathbf{100}e^{-\mathbf{100}t}$ (ii) $\mathbf{100}e^{-\mathbf{k}t}$ (iii) $\mathbf{k}e^{-\mathbf{100}t}$
 - (b) (i) **True** (ii) **False** At t = 0, $P = 100e^{-k(0)} = 100$.
 - (c) Since carbon 14 decreases to 50% its original amount every t=5570 years, the original 100% decreases to 50% and so, at t=5570, $y=100e^{-k(5570)}=$ (i) **25** (ii) **50** (iii) **75**.
 - (d) Rewrite $100e^{-k(5570)}=50$ as $e^{-5570k}=0.5$, so $\ln e^{-5570k}=\ln 0.5$ or $-5570k=\ln 0.5$ and so $k\approx$ (i) **0.0009303** (ii) **0.0001244**.
 - (e) So, since 34% of the original 100% of carbon 14 remains, $y = 100e^{-0.0001244t} = (i)$ **34** (ii) **55** (iii) **73**.
 - (f) Rewrite $100e^{-0.0001244t} = 34$ as $e^{-0.0001244t} = 0.34$, so $\ln e^{-0.0001244t} = \ln 0.34$ or $-0.0001244t = \ln 0.34$ and so $t \approx$ (i) **7669.3** (ii) **8672.1** (iii) **9669.3**.
- 8. Graphs of limited growth functions, $y = L (L y_0)e^{kt}$.

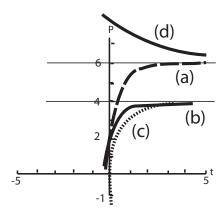


Figure 2.14 (Various limited growth models)

(Calculator: Use WINDOW -1 4 1 -1 8 1 1)

- (a) Logarithm function $f(x) = 4 4e^{-3t}$ corresponds to graph (i) (a) (ii) (b) (iii) (c) (iv) (d) with y-intercept $L y_0 = 4 4 = (i)$ 0 (ii) 2 (iii) 4
- (b) Limited growth function $f(x) = 4 2e^{-3t}$ corresponds to graph (i) (a) (ii) (b) (iii) (c) (iv) (d) with y-intercept $L y_0 = 4 2 = (i)$ 0 (ii) 2 (iii) 4
- (c) Logarithm function $f(x) = 6 4e^{-3t}$ corresponds to graph (i) (a) (ii) (b) (iii) (c) (iv) (d) with y-intercept $L y_0 = 6 4 = (i)$ 0 (ii) 2 (iii) 4
- (d) If limit is greater than initial value, $L > y_0$, L is a(n) (i) **upper** (ii) **lower** limit, otherwise it is a lower limit.
- 9. Little green men, k known and t unknown. Little green men can only grow to a maximum height of 4.2 feet tall. If Tim (an alien) is now 2.4 feet tall, how tall will he be 5 years from now, if k = -0.4? Assume initial height is $y_0 = 0$.
 - (a) The y in $y = L (L y_0)e^{kt}$ describes the (i) **growth rate** (ii) **height** (iii) **height** (iv) **maximum height** of little green men given by (i) **2.4** (ii) **3.7** (iii) **4.2** feet tall.
 - (b) The L in $y = L (L y_0)e^{kt}$ describes the (i) **growth rate** (ii) **height** (iii) **height** (iv) **maximum height** of little green men given by (i) **2.4** (ii) **3.7** (iii) **4.2** feet tall.
 - (c) Since y = 2.4, $y = 4.2 4.2e^{-0.4t} = 2.4$ or $4.2e^{-0.4t} = 1.8$ or $e^{-0.4t} = \frac{1.8}{4.2}$ or $\ln e^{-0.4t} = \ln \left(\frac{1.8}{4.2}\right)$, so $-0.4t = \frac{\ln(1.8/4.2)}{-0.4}$, so $t \approx$ (i) **1.9** (ii) **2.1** (iii) **2.5**
 - (d) so, 5 years from now, in other words, at t = 2.1 + 5 = 7.1 years, $y = L (L y_0)e^{kt} = 4.2 4.2e^{-0.4 \times 7.1} \approx \text{(i) } \textbf{3.8} \text{ (ii) } \textbf{4.0} \text{ (iii) } \textbf{4.2}.$

- 10. Advertising Car Parts, k and t unknown. After 10 days, 40% of 24000 viewers of a local TV station had seen an advertisement on car parts. How long must the advertisement air to reach 80% of the station's viewers? Use the limited growth model.
 - (a) Since no one sees the advertisement before it airs, the initial number of viewers must be $y_0 = (i) \ 0 \ (ii) \ 9600 \ (iii) \ 19200 \ (iv) \ 24000$.
 - (b) Since maximum number of viewers is 24,000, $L = (i) \ \mathbf{0} \ (ii) \ \mathbf{9600} \ (iii) \ \mathbf{19200} \ (iv) \ \mathbf{24000}.$
 - (c) Since 40% of viewers (0.4(24000) = 9600 viewers) see the ad after t = 10 days, $y = 24000 24000e^{k(10)} = \text{(i) } \mathbf{0} \text{ (ii) } \mathbf{9600} \text{ (iii) } \mathbf{19200} \text{ (iv) } \mathbf{24000}.$
 - (d) Rewrite $24000 24000e^{k(10)} = 9600$ as $e^{10k} = \frac{14400}{24000}$, or $10k = \ln\left(\frac{14400}{24000}\right)$ and so $k \approx$ (i) -0.05108 (ii) -0.08244.
 - (e) Since we are interested at what time t the advertisement reaches 80% of the station's viewers (0.8(24000) = 19200 viewers), $y = 24000 24000e^{-0.05108t} = \text{(i) } \mathbf{0} \text{ (ii) } \mathbf{9600} \text{ (iii) } \mathbf{19200} \text{ (iv) } \mathbf{24000}.$
 - (f) Rewrite $24000 24000e^{-0.05108t} = 19200$ as $e^{-0.05108k} = \frac{4800}{24000}$, or $-0.05108t = \ln\left(\frac{4800}{24000}\right)$ and so $t \approx$ (i) **29.5** (ii) **30.5** (iii) **31.5** days.
- 11. $r_E = \left(a + \frac{r}{m}\right)^m 1.$

Which is larger: 10% compounded monthly or 10.2% compounded quarterly?

- (a) After 1 year, \$1 invested 10% compounded monthly, $A = P\left(1 + \frac{r}{m}\right)^{mt} = 1\left(1 + \frac{0.10}{12}\right)^{12(1)} \approx \text{(i) } \mathbf{1.084713} \quad \text{(ii) } \mathbf{1.094713} \quad \text{(iii) } \mathbf{1.104713}$ Calculator: $1*(1+0.10/12) \land (12)$ so interest earned in one year is this amount subtract \$1, $r_E = \left(1 + \frac{r}{m}\right)^m 1 \approx \text{(i) } \mathbf{0.1047} \quad \text{(ii) } \mathbf{0.1147} \quad \text{(iii) } \mathbf{0.1247} \text{ or } 10.47\%$ Calculator: $(1+0.10/12) \land (12) 1$
- (b) After 1 year, \$1 invested 10.2% compounded quarterly, $A = P\left(1 + \frac{r}{m}\right)^{mt} = 1\left(1 + \frac{0.102}{4}\right)^{4(1)} \approx \text{(i) } \mathbf{1.085968} \quad \text{(ii) } \mathbf{1.095968} \quad \text{(iii) } \mathbf{1.105968}$ Calculator: $(1 + 0.102/4) \wedge (4)$ so interest earned in one year, $r_E = \left(1 + \frac{r}{m}\right)^m 1 = \text{(i) } \mathbf{0.10597} \quad \text{(ii) } \mathbf{0.11597} \quad \text{(iii) } \mathbf{0.12597} \text{ or } 10.60\%$ Calculator: $(1 + 0.102/4) \wedge (4) 1$
- (c) Consequently, 10% compounded monthly $(r_E: 10.47\%)$ is (i) less (ii) more than 10.2% compounded quarterly $(r_E: 10.60\%)$.