Chapter 3

The Derivative

The slope of the tangent line to a curve is called the *derivative*. Derivatives are defined and graphed after first discussing limits, continuity and rates of change.

3.1 Limits

The *limit* L of function f(x) as x approaches (but does not equal) a (from both sides of a) is written

$$\lim_{x \to a} f(x) = L$$

where a and L are both real numbers and where values of f(x) approach (and perhaps equal) L. The limit of L as x approaches a does not exist if

- as x approaches a from both sides, f(x) approaches either positive (denoted $\lim_{x\to a} f(x) = \infty$) or negative infinity (denoted $\lim_{x\to a} f(x) = -\infty$), or
- as x approaches a from one side, f(x) approaches positive infinity, but as x approaches a from the other side f(x) approaches negative infinity or vis-versa,
- $\lim_{x\to a^-} f(x) = L$ and $\lim_{x\to a^+} f(x) = M$, where $L \neq M$

If a, A, B are real numbers, f and g are functions and

$$\lim_{x \to a} f(x) = A, \qquad \lim_{x \to a} g(x) = B,$$

then

- 1. If k is a constant, $\lim_{x\to a} k = k$ and $\lim_{x\to a} [k \cdot f(x)] = k \cdot \lim_{x\to a} f(x) = k \cdot A$
- 2. $\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) = A \pm B$
- 3. $\lim_{x \to a} [f(x) \cdot g(x)] = [\lim_{x \to a} f(x)] \cdot [\lim_{x \to a} g(x)] = A \cdot B$
- 4. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{A}{B}, if B \neq 0$

- 5. If p(x) is a polynomial, then $\lim_{x\to a} p(x) = p(a)$
- 6. For any real k, $\lim_{x\to a} [f(x)]^k = [\lim_{x\to a} f(x)]^k = A^k$, provided limit exists
- 7. $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$ if f(x) = g(x) for all $x \neq a$
- 8. For any real number b > 0, $\lim_{x \to a} b^{f(x)} = b^{[\lim_{x \to a} f(x)]} = b^A$
- 9. For any real number b where 0 < b < 1 or b > 1, $\lim_{x \to a} [\log_b f(x)] = \log_b [\lim_{x \to a} f(x)] = \log_b A, \text{ if } A > 0$

Limits at infinity for $f(x) = \frac{p(x)}{q(x)}, q(x) \neq 0$, such as $\lim_{x\to\infty} f(x)$ and $\lim_{x\to\infty} f(x)$, determined by

- dividing p(x) and q(x) by highest power of q(x) (not p(x)!)
- then, for positive real n, using

$$\lim_{x \to \infty} \frac{1}{x^n} = 0, \qquad \lim_{x \to -\infty} \frac{1}{x^n} = 0$$

where if x < 0, x^n does not necessarily always exist (for example, for $n = \frac{1}{2}$) and so limit also does not exist in these cases

Exercise 2.1 (Limits)

1. Limits for function $f(x) = \frac{(2x-3)(0.5x+1)}{2x-3}$.

(Type $y = \frac{(2x-3)(0.5x+1)}{2x-3}$ into Y=, then WINDOW -5 5 1 -5 5 1, then GRAPH; use WINDOW 1.45 1.55 1 1.72 1.78 1 with dotted line to see the removable discontinuity.)

- (a) Limit as $x \to 4$, Figure (a).
 - i. *left limit, by table*. Complete the following table.

$x \rightarrow$	3.9	3.99	3.999	3.9999	3.99999
$f(x) = \frac{(2x-3)(0.5x+1)}{2x-3} \to$	2.95	2.995	2.9995	2.99995	

(Type 2nd TBLSET 1 1 Ask Auto, then 2nd TABLE 3.9 ENTER 3.99 ENTER and so on.) So, as x approaches (but does not equal) 4 from the left, $\lim_{x\to 4^-} f(x) = (i)$ 3 (ii) 4 (iii) 5.

ii. right limit, by table. Complete the following table.

4.00001	4.0001	4.001	4.01	4.1	$\leftarrow x$
	3.0005	3.005	3.05	3.05	$\leftarrow f(x) = \frac{(2x-3)(0.5x+1)}{2x-3}$

(Type 2nd TBLSET 1 1 Ask Auto, then 2nd TABLE 4.1 ENTER 4.01 ENTER and so on.) So, as x approaches (but does not equal) 4 from the right, $\lim_{x\to 4^+} f(x) = (i)$ 3 (ii) 4 (iii) 5.

- iii. As x approaches (but does not equal) 4 from either left or the right, so $\lim_{x\to 4} f(x) = (i)$ 3 (ii) 4 (iii) 5.
- iv. The value of the function at x = 4 is given by $f(4) = \frac{(2(4)-3)(0.5(4)+1)}{2(4)-3} = (i)$ **3** (ii) **4** (iii) **5**.
- v. Limit $L = \lim_{x \to 4} f(x)$ (i) exists (ii) does not exist (it equals 3), and value f(4) (i) exists (ii) does not exist (it equals 3), so limit L = 3 is (i) equal to (ii) different from value f(4) = 3.
- (b) Limit as $x \to 1.5$, Figure (b).
 - i. *left limit, by table.*

$x \rightarrow$	1.4	1.49	1.499	1.4999	1.49999
$f(x) = \frac{(2x-3)(0.5x+1)}{2x-3} \to$	1.7	1.745	1.7495	1.75	

(Type 2nd TBLSET 1 1 Ask Auto, then 2nd TABLE 1.4 ENTER 1.49 ENTER and so on.) so $\lim_{x\to 1.5^-} f(x) = (i)$ **1.50** (ii) **1.75** (iii) **1.80**.

ii. right limit, by table.

1.50001	1.5001	1.501	1.51	1.6	$\leftarrow x$
	1.7501	1.7505	1.755	1.8	$\leftarrow f(x) = \frac{(2x-3)(0.5x+1)}{2x-3}$

(Type 2nd TBLSET 1 1 Ask Auto, then 2nd TABLE 1.6 ENTER 1.51 ENTER and so on.) so $\lim_{x\to 1.5^+} f(x) = (i)$ **1.50** (ii) **1.75** (iii) **1.80**.

- iii. so $\lim_{x\to 1.5} f(x) = (i)$ **1.50** (ii) **1.75** (iii) **1.80**.
- iv. The value of the function at x = 1.5 is given by $f(1.5) = \frac{(2(1.5)-3)(0.5(1.5)+1)}{2(1.5)-3} = (i) 3$ (ii) 4 (iii) 5 (iv) does not exist.
- v. Limit $\lim_{x\to 1.5} f(x)$ (i) exists (ii) does not exist (it equals 1.75), but value f(1.5) (i) exists (ii) does not exist.

2. Limits for function
$$f(x) = \frac{x^2 + x - 6}{x^2 - 4}$$
.

(Type $y = \frac{x^2 + x - 6}{x^2 - 4}$ into Y=, then WINDOW -5 5 1 -5 5 1, then GRAPH.)

- (a) Figure (a), limit as $x \to 2$.
 - i. *left limit, by table.*

$x \rightarrow$	1.9	1.99	1.999	1.9999	1.99999
$f(x) \rightarrow$	1.2564	1.2506	1.2501	1.25	1.25

(Type 2nd TBLSET 1 1 Ask Auto, then 2nd TABLE 1.9 ENTER and so on.) so $\lim_{x\to 2^-} f(x) = (i) \ \mathbf{0.50}$ (ii) $\mathbf{0.75}$ (iii) $\mathbf{1.25}$.

ii. right limit, by table.

2.00001	2.0001	2.001	2.01	2.1	$\leftarrow x$
1.25	1.25	1.2499	1.2494	1.2439	$\leftarrow f(x)$

(Type 2nd TBLSET 1 1 Ask Auto, then 2nd TABLE 2.1 ENTER and so on.)

- so $\lim_{x\to 2^+} f(x) = (i) \ \mathbf{0.50}$ (ii) $\mathbf{0.75}$ (iii) $\mathbf{1.25}$.
- iii. so $\lim_{x\to 2} f(x) = (i)$ **0.50** (ii) **0.75** (iii) **1.25**.
- iv. also, $f(2) = \frac{(2)^2 + (2) 6}{(2)^2 4} = (i)$ does not exist (ii) 0 (iii) 3
- v. so $\lim_{x\to 2} f(x)$ (i) exists (ii) does not exist (it equals 1.25). but f(2) (i) exists (ii) does not exist (removable discontinuity).
- (b) Figure (b), limit as $x \to -2$.

i. *left limit, by table.*

$x \rightarrow$	-2.1	-2.01	-2.001	-2.0001	-2.00001
$f(x) \rightarrow$	-9	-99	-999	-9999	-99999

(Type 2nd TBLSET 1 1 Ask Auto, then 2nd TABLE -2.1 ENTER and so on.) so $\lim_{x\to -2^-} f(x) = (i) \ \mathbf{0} \quad (ii) -\infty \quad (iii) \infty$.

ii. right limit, by table.

-1.99999	-1.9999	-1.999	-1.99	-1.9	$\leftarrow x$
100001	10001	1001	101	11	$\leftarrow f(x)$

(Type 2nd TBLSET 1 1 Ask Auto, then 2nd TABLE -1.9 ENTER and so on.) so $\lim_{x\to -2^+} f(x) = (i) \mathbf{0}$ (ii) $-\infty$ (iii) ∞ .

iii. so
$$\lim_{x\to-2} f(x) = (i)$$
 exists (ii) does not exist.
iv. also, $f(-2) = \frac{(-2)^2 + (-2) - 6}{(-2)^2 - 4} = (i)$ does not exist (ii) 0 (iii) 3
v. so $\lim_{x\to-2} f(x)$ (i) exists (ii) does not exist
and $f(-2)$ (i) exists (ii) does not exist.

3. Limits for $f(x) = \frac{1}{x^2}$ and $f(x) = \frac{1}{x}$.

(Type $y = \frac{1}{x^2}$ into $Y_1 = and \ y = \frac{1}{x}$ into $Y_2 =$, then WINDOW -5 5 1 -5 5 1, then GRAPH.)

- (a) Function (a). $f(x) = \frac{1}{x^2}$.
 - i. left limit, by table.

$x \rightarrow$	-0.1	-0.01	-0.001	-0.0001	-0.00001
$f(x) \rightarrow$	10^{2}	10^{4}	10^{6}	10^{8}	10^{10}

(Type 2nd TBLSET 1 1 Ask Auto, then 2nd TABLE -0.1 ENTER and so on.) so $\lim_{x\to 0^-} \frac{1}{x^2} = (i) \mathbf{0}$ (ii) $-\infty$ (iii) ∞ .

ii. right limit, by table.

0.00001	0.0001	0.001	0.01	0.1	$\leftarrow x$
10^{10}	10^{8}	10^{6}	10^{4}	10^{2}	$\leftarrow f(x)$

(Type 2nd TBLSET 1 1 Ask Auto, then 2nd TABLE 0.1 ENTER and so on.) so $\lim_{x\to 0^+} \frac{1}{x^2} = (i) \mathbf{0}$ (ii) $-\infty$ (iii) ∞ .

iii. so $\lim_{x\to 0} f(x) = (i) \mathbf{0}$ (ii) $-\infty$ (iii) ∞ .

iv. also,
$$f(0) = \frac{1}{0^2} = (i)$$
 does not exist (ii) 0 (iii) 3

v. so $\lim_{x\to 0} f(x) = \infty$, so (i) exists (ii) does not exist and f(0) (i) exists (ii) does not exist.

(b) *Function* (b).
$$f(x) = \frac{1}{x}$$
.

i. *left limit, by table.*

$x \rightarrow$	-0.1	-0.01	-0.001	-0.0001	-0.00001
$f(x) \rightarrow$	-10^{1}	-10^{2}	-10^{3}	-10^{4}	-10^{5}

(Type 2nd TBLSET 1 1 Ask Auto, then 2nd TABLE -0.1 ENTER and so on.) so $\lim_{x\to 0^-} \frac{1}{x} = (i) \mathbf{0}$ (ii) $-\infty$ (iii) ∞ .

- ii. right limit, by table. 0.00001 0.0001 0.10.0010.01 $\leftarrow x$ 10^{5} 10^{4} 10^{3} 10^{2} 10^{1} $\leftarrow f(x)$ (Type 2nd TBLSET 1 1 Ask Auto, then 2nd TABLE 0.1 ENTER and so on.) so $\lim_{x\to 0^+} \frac{1}{x} = (i) \mathbf{0}$ (ii) $-\infty$ (iii) ∞ . iii. so $\lim_{x\to 0} f(x) = (i)$ does not exist (ii) $-\infty$ (iii) ∞ . iv. also, $f(0) = \frac{1}{0} = (i)$ does not exist (ii) 0 (iii) 3 v. so $\lim_{x\to 0} f(x)$ (i) exists (ii) does not exist and f(0) (i) exists (ii) does not exist.
- 4. Limits with vertical asymptotes and removable discontinuities.

i. simplifying f(x).

$$\frac{(x+3)(x-2)}{(x+2)(x-2)} = \frac{(x+3)}{(x+2)}, x \neq 2$$

where (i) $x \neq -2$ (ii) $x \neq 0$ (iii) $x \neq 2$.

- ii. $\lim_{x \to -2^{-}} \frac{(x+3)}{(x+2)} = (i) \mathbf{0}$ (ii) **1.5** (iii) ∞ (iv) $-\infty$. (Hint: Look at graph in function (b).)
- iii. $\lim_{x \to -2^+} \frac{(x+3)}{(x+2)} = (i) \mathbf{0}$ (ii) **1.5** (iii) ∞ (iv) $-\infty$.
- iv. so vertical asymptote at (i) x = -2 (ii) x = 0 (iii) x = 1.5
- v. $\lim_{x\to 2} \frac{(x+3)}{(x+2)} = (i) \mathbf{0}$ (ii) **1.25** (iii) ∞ (iv) $-\infty$. (Look at graph of function (b))
- vi. **True** / **False** "Potential" vertical asymptote at x = 2 "cancelled out" in *simplified* rational function and, as a consequence, appears, instead, as a removable discontinuity.

5. More limits with vertical asymptotes and removable discontinuities.

(a) Function $f(x) = \frac{(x-2)(x+2)(x-5)}{(x-2)(x+2)(x-1)}$ has vertical asymptote(s) at (circle none, one or more) (i) x = -2 (ii) x = 1 (iii) x = 2 (iv) none and removable discontinuities at (circle none, one or more) (i) x = -2 (ii) x = 1 (iii) x = 2 (iv) none (b) Function $f(x) = \frac{(x-2)(x+3)(x-5)}{(x-2)(x+2)(x-1)}$ has vertical asymptote(s) at (circle none, one or more) (i) x = -2 (ii) x = 1 (iii) x = 2 (iv) none and removable discontinuities at (circle none, one or more) (i) x = -2 (ii) x = 1 (iii) x = 2 (iv) none (c) Function $f(x) = \frac{x^2 + x - 6}{(x-2)(x+2)(x-1)}$ has vertical asymptote(s) at (circle none, one or more) (i) x = -2 (ii) x = 1 (iii) x = 2 (iv) none and removable discontinuities at (circle none, one or more) (i) x = -2 (ii) x = 1 (iii) x = 2 (iv) none (d) Function $f(x) = \frac{x^2 + x - 6}{(x+4)(x-1)(x+5)}$ has vertical asymptote(s) at (circle none, one or more) (i) x = -4 (ii) x = -5 (iii) x = 1 (iv) none and removable discontinuities at (circle none, one or more) (i) x = -4 (ii) x = -5 (iii) x = 1 (iv) none (e) Function $f(x) = \frac{x^2 + x - 6}{(x + \frac{3}{2})(x - \sqrt{3})}$ has vertical asymptote(s) at (circle none, one or more)

(i) $x = -\frac{3}{2}$ (ii) x = 0 (iii) $x = \sqrt{3}$ (iv) none and removable discontinuities at (circle none, one or more) (i) $x = -\frac{3}{2}$ (ii) x = 0 (iii) $x = \sqrt{3}$ (iv) none

- (f) **True** / **False** Function $f(x) = \frac{x-3}{x^2-5x+7}$, has no vertical asymptote because $x^2 5x + 7$ has no (real) zeros. (Sketch $x^2 - 3x + 7$ and notice that this function does not cross the *x*-axis.)
- 6. Limits for piecewise functions.

Figure 3.5 (Limits for piecewise functions)

(use WINDOW -5 5 1 -5 5 1, use dotted line, use 2nd TEST for in/equalities, For (a), type y = (-x)(x < 0) + (2)(x = 0) + (x)(x > 0) into Y= For (b), type $y = (2x + 4)(X \le -1) + (2x^3 - 4x)(x > -1)(x < 1.5) + (-2x^2 + 2x - 2)(x \ge 1.5)$ into Y=)

(a) Figure (a), limit as $x \to 0$.

$$f(x) = \begin{cases} x & \text{if } x > 0\\ 2 & \text{if } x = 0\\ -x & \text{if } x < 0 \end{cases}$$

i. *left limit, by table.*

$x \rightarrow$	-0.1	-0.01	-0.001	-0.0001	-0.00001
$f(x) \rightarrow$	0.1	0.01	0.001	0.0001	0.00001

(Type 2nd TBLSET 1 1 Ask Auto, then 2nd TABLE -0.1 ENTER and so on.) $\lim_{x\to 0^-} f(x) = (i) \ \mathbf{0} \quad (ii) -\infty \quad (iii) \ \infty.$

ii. right limit, by table.

0.00001	0.0001	0.001	0.01	0.1	$\leftarrow x$
0.00001	0.0001	0.001	0.01	0.1	$\leftarrow f(x)$

(Type 2nd TBLSET 1 1 Ask Auto, then 2nd TABLE 0.1 ENTER and so on.)

- iii. $\lim_{x \to 0^+} f(x) = (i) \mathbf{0}$ (ii) $-\infty$ (iii) ∞ .
- iv. so $\lim_{x\to 0} f(x) = (i) \mathbf{0}$ (ii) $-\infty$ (iii) ∞ .
- v. also, $f(0) = (i) \mathbf{0}$ (ii) $\mathbf{1}$ (iii) $\mathbf{2}$
- vi. so $\lim_{x\to 0} f(x)$ (i) exists (ii) does not exist (it is 0) and f(0) (i) exists (ii) does not exist (it is 2) and limit L = 0 is (i) equal to (ii) different from value f(0) = 2.
- (b) Figure (b), limit as $x \to 1.5$.

$$f(x) = \begin{cases} 2x+4 & \text{if } x \le -1\\ 2x^3 - 4x & \text{if } -1 < x < 1.5\\ -2x^2 + 2x - 2 & \text{if } 1.5 \le x, \end{cases}$$

i. *left limit, by table.*

$x \rightarrow$	1.4	1.49	1.499	1.4999	1.49999
$f(x) \rightarrow$	-0.112	-0.6559	0.74051	0.74905	0.74991

(Type 2nd TBLSET 1 1 Ask Auto, then 2nd TABLE 1.4 ENTER 1.49 ENTER and so on.) $\lim_{x\to 1.5^-} f(x) = (i) 0.75$ (ii) 1.75 (iii) 2.75.

ii. right limit, by table.

1.50001	1.5001	1.501	1.51	1.6	$\leftarrow x$
-3.5	-3.5	-3.504	-3.54	-3.92	$\leftarrow f(x)$

(Type 2nd TBLSET 1 1 Ask Auto, then 2nd TABLE 1.6 ENTER 1.51 ENTER and so on.) $\lim_{x\to 1.5^+} f(x) = (i) -1.5$ (ii) -2.5 (iii) -3.5.

- iii. so $\lim_{x\to 1.5} f(x) = (i)$ does not exist (ii) 1.75 (iii) 1.80.
- iv. and f(1.5) = (i) -1.5 (ii) -2.5 (iii) -3.5.
- v. Limit $\lim_{x\to 1.5} f(x)$ (i) exists (ii) does not exist, but value f(1.5) (i) exists (ii) does not exist (it is -3.5).

7. Limits at infinity (horizontal asymptotes).

Figure 3.6 (Limits at infinity)

(a) Function (a). $f(x) = \frac{x^2 + x - 6}{x^2 - 4}$.

i. limit at positive infinity, by table.

	$x \rightarrow$	10	100	1000	10000	100000
	$f(x) \rightarrow$	1.0833	1.0098	1.001	1.0001	1.00001
ype 2nd TBLSET 1 1 Ask Auto, then 2nd TABLE 10 ENTER and so on.)						

(Type 2nd TBLSET 1 1 Ask Auto, then 2nd TABLE 10 so $\lim_{x\to\infty} \frac{x^2+x-6}{x^2-4} =$ (i) **0** (ii) **1** (iii) **2**.

ii. *limit at positive infinity, by algebra.*

$$\lim_{x \to \infty} \frac{x^2 + x - 6}{x^2 - 4} = \lim_{x \to \infty} \frac{\frac{x^2}{x^2} + \frac{x}{x^2} - \frac{6}{x^2}}{\frac{x^2}{x^2} - \frac{4}{x^2}}$$
$$= \lim_{x \to \infty} \frac{1 + \frac{1}{x} - \frac{6}{x^2}}{1 - \frac{4}{x^2}}$$
$$= \frac{1 + 0 - 0}{1 - 0} =$$

(i) **0** (ii) **1** (iii) **2**.

iii. limit at negative infinity, by table.

-100000	-10000	-1000	-100	-10	$\leftarrow x$
0.99999	0.9999	0.999	0.9898	0.875	$\leftarrow f(x)$

(Type 2nd TBLSET 1 1 Ask Auto, then 2nd TABLE -10 ENTER and so on.) so $\lim_{x\to-\infty} \frac{x^2+x-6}{x^2-4} = (i) \mathbf{0}$ (ii) $\mathbf{1}$ (iii) $\mathbf{2}$.

iv. limit at negative infinity, by algebra.

$$\lim_{x \to -\infty} \frac{x^2 + x - 6}{x^2 - 4} = \lim_{x \to -\infty} \frac{\frac{x^2}{x^2} + \frac{x}{x^2} - \frac{6}{x^2}}{\frac{x^2}{x^2} - \frac{4}{x^2}}$$
$$= \lim_{x \to -\infty} \frac{1 + \frac{1}{x} - \frac{6}{x^2}}{1 - \frac{4}{x^2}}$$
$$= \frac{1 + 0 - 0}{1 - 0} =$$

(i) **0** (ii) **1** (iii) **2**.

v. so horizontal asymptote at (i) $\boldsymbol{y} = \boldsymbol{0}$ (ii) $\boldsymbol{y} = \boldsymbol{1}$ (iii) $\boldsymbol{y} = \boldsymbol{2}$ (b) Function (b). $f(x) = \frac{2x^2+2}{x^2+5}$.

i. *limit at positive infinity*.

$$\lim_{x \to \infty} \frac{2x^2 + 2}{x^2 + 5} = \lim_{x \to \infty} \frac{\frac{2x^2}{x^2} + \frac{2}{x^2}}{\frac{x^2}{x^2} + \frac{5}{x^2}}$$
$$= \lim_{x \to \infty} \frac{2 + \frac{2}{x^2}}{1 + \frac{5}{x^2}} =$$

(i) **0** (ii) **1** (iii) **2**.

ii. *limit at negative infinity.*

$$\lim_{x \to -\infty} \frac{2x^2 + 2}{x^2 + 5} = \lim_{x \to -\infty} \frac{\frac{2x^2}{x^2} + \frac{2}{x^2}}{\frac{x^2}{x^2} + \frac{5}{x^2}}$$
$$= \lim_{x \to -\infty} \frac{2 + \frac{2}{x^2}}{1 + \frac{5}{x^2}} =$$

(i) **0** (ii) **1** (iii) **2**.

iii. so horizontal asymptote at (i) $\boldsymbol{y} = \boldsymbol{0}$ (ii) $\boldsymbol{y} = \boldsymbol{1}$ (iii) $\boldsymbol{y} = \boldsymbol{2}$

- 8. More limits at infinity
 - (a) *limit at positive infinity.*

$$\lim_{x \to \infty} \frac{2x^2 + x - 6}{x^2 - 4} = \lim_{x \to \infty} \frac{\frac{2x^2}{x^2} + \frac{x}{x^2} - \frac{6}{x^2}}{\frac{x^2}{x^2} - \frac{4}{x^2}}$$
$$= \lim_{x \to \infty} \frac{2 + \frac{1}{x} - \frac{6}{x^2}}{1 - \frac{4}{x^2}} =$$

(i) **0** (ii) **1** (iii) **2**

(b) *limit at positive infinity.*

$$\lim_{x \to \infty} \frac{2x+2}{x^2+5} = \lim_{x \to \infty} \frac{\frac{2x}{x^2} + \frac{2}{x^2}}{\frac{x^2}{x^2} + \frac{5}{x^2}}$$
$$= \lim_{x \to \infty} \frac{\frac{1}{x} + \frac{2}{x^2}}{1 + \frac{5}{x^2}} =$$

- (i) **0** (ii) **1** (iii) **2**.
- (c) *limit at positive infinity.*

$$\lim_{x \to \infty} \frac{-2x^2 + x - 6}{5x^2 - 4} = \lim_{x \to \infty} \frac{\frac{-2x^2}{x^2} + \frac{x}{x^2} - \frac{6}{x^2}}{\frac{5x^2}{x^2} - \frac{4}{x^2}}$$
$$= \lim_{x \to \infty} \frac{-2 + \frac{1}{x} - \frac{6}{x^2}}{5 - \frac{4}{x^2}} =$$

(i) $-\frac{2}{5}$ (ii) -2 (iii) -5.

(d) *limit at negative infinity.*

$$\lim_{x \to -\infty} \frac{-2x^2 + x - 6}{5x^2 - 4} = \lim_{x \to -\infty} \frac{\frac{-2x^2}{x^2} + \frac{x}{x^2} - \frac{6}{x^2}}{\frac{5x^2}{x^2} - \frac{4}{x^2}}$$
$$= \lim_{x \to -\infty} \frac{-2 + \frac{1}{x} - \frac{6}{x^2}}{5 - \frac{4}{x^2}} =$$

~

(i) $-\frac{2}{5}$ (ii) -2 (iii) -5.

(e) *limit at positive infinity*.

$$\lim_{x \to \infty} \frac{2x^2 + 2}{x + 5} = \lim_{x \to \infty} \frac{\frac{2x^2}{x} + \frac{2}{x}}{\frac{x}{x} + \frac{5}{x}} \quad \text{divide by highest power of } x \text{ in denominator}$$
$$= \lim_{x \to \infty} \frac{2x + \frac{2}{x}}{1 + \frac{5}{x}} =$$

- (i) 0 (ii) 1 (iii) ∞ (iv) does not exist. (The function $\frac{2x^2+2}{x+5}$ does not have a horizontal asymptote.)
- (f) *limit at positive infinity.*

$$\lim_{x \to \infty} \frac{x^3 + x^2 - 6}{-x^2 + 1} = \lim_{x \to \infty} \frac{\frac{x^3}{x^2} + \frac{x^2}{x^2} - \frac{6}{x^2}}{-\frac{x^2}{x^2} + \frac{1}{x^2}}$$
$$= \lim_{x \to \infty} \frac{x + 1 - \frac{6}{x^2}}{-1 + \frac{1}{x^2}} =$$

(i) 0 (ii) $-\infty$ (iii) ∞ (iv) does not exist. (Notice the negative in the denominator.)

9. Oblique asymptotes.

Figure 3.7 (Oblique asymptotes)

(a) Figure (a). $f(x) = (x+2) + \frac{1}{x}$. i. $\lim_{x\to\infty} \left((x+2) + \frac{1}{x} \right) = (i) \ \mathbf{0}$ (ii) $\mathbf{1}$ (iii) ∞ (iv) $-\infty$. ii. $\lim_{x\to-\infty} \left((x+2) + \frac{1}{x} \right) = (i) \ \mathbf{0}$ (ii) $\mathbf{1}$ (iii) ∞ (iv) $-\infty$. iii. oblique asymptote at (i) $\mathbf{y} = \mathbf{x} + \mathbf{2}$ (ii) $\mathbf{y} = -\frac{4}{3}\mathbf{x} - \mathbf{4}$ (iii) $\mathbf{y} = 2\mathbf{x}$ iv. vertical asymptote at (i) $\mathbf{x} = -\mathbf{1}$ (ii) $\mathbf{x} = \mathbf{0}$ (iii) $\mathbf{x} = \mathbf{1}$ (b) Figure (b). $f(x) = \left(-\frac{4}{3}x - 4\right) + \frac{1}{x^2}$. i. $\lim_{x\to\infty} \left(\left(-\frac{4}{3}x - 4\right) + \frac{1}{x^2} \right) = (i) \ \mathbf{0}$ (ii) $\mathbf{1}$ (iii) ∞ (iv) $-\infty$. ii. $\lim_{x\to-\infty} \left(\left(-\frac{4}{3}x - 4 \right) + \frac{1}{x^2} \right) = (i) \mathbf{0}$ (ii) $\mathbf{1}$ (iii) ∞ (iv) $-\infty$. iii. oblique asymptote at (i) $\mathbf{y} = \mathbf{x} + \mathbf{2}$ (ii) $\mathbf{y} = -\frac{4}{3}\mathbf{x} - \mathbf{4}$ (iii) $\mathbf{y} = \mathbf{2x}$ iv. vertical asymptote at (i) $\mathbf{x} = -\mathbf{1}$ (ii) $\mathbf{x} = \mathbf{0}$ (iii) $\mathbf{x} = \mathbf{1}$

(c) Figure (c).
$$f(x) = \frac{2x^2 - 2x + 1}{x - 1}$$
.

i. function with disguised oblique asymptote.

$$\frac{2x^2 - 2x + 1}{x - 1} = \frac{2x(x - 1) + 1}{x - 1} = \frac{2x(x - 1)}{x - 1} + \frac{1}{x - 1} =$$

- (i) $2x + \frac{1}{x}$ (ii) $2x + \frac{1}{x-1}$ ii. $\lim_{x\to\infty} \left(2x + \frac{1}{x-1}\right) =$ (i) **0** (ii) **1** (iii) ∞ (iv) $-\infty$. iii. $\lim_{x\to-\infty} \left(2x + \frac{1}{x-1}\right) =$ (i) **0** (ii) **1** (iii) ∞ (iv) $-\infty$. iv. oblique asymptote at (i) y = x + 2 (ii) $y = -\frac{4}{3}x - 4$ (iii) y = 2x
- v. vertical asymptote at (i) $\boldsymbol{x} = -1$ (ii) $\boldsymbol{x} = 0$ (iii) $\boldsymbol{x} = 1$

10. Working with limits. Let

$$\lim_{x \to 5} f(x) = 2 \qquad \lim_{x \to 5} g(x) = 16$$

- (a) $\lim_{x\to 5} [f(x) + g(x)] =$ (i) **18** (ii) **16** (iii) **32**.
- (b) $\lim_{x\to 5} [f(x) \cdot g(x)] = (i) \mathbf{16}$ (ii) $\mathbf{18}$. (iii) $\mathbf{32}$
- (c) $\lim_{x\to 5} \frac{g(x)}{f(x)} =$ (i) **32** (ii) **8** (iii) **18**.
- (d) $\lim_{x\to 5} [f(x)]^4 = (i)$ **16** (ii) **32** (iii) **18**.
- (e) $\lim_{x\to 5} \sqrt{g(x)} =$ (i) **16** (ii) **18**. (iii) **4**
- (f) $\lim_{x\to 5} 4^{[f(x)]} =$ (i) **32** (ii) **18**. (iii) **16**
- (g) $\lim_{x\to 5} [\log_2 f(x)] = (i) \mathbf{1}$ (ii) **2** (iii) **16**.
- (h) $\lim_{x\to 5} 16 =$ (i) **16** (ii) **5** (iii) **32**.

(i)
$$\lim_{x\to 5} \sqrt{\frac{f(x)+g(x)}{2}} =$$
 (i) **1** (ii) **2** (iii) **3**.

11. More working with limits.

(a) $\lim_{x\to 2} [x]^3 = (i) \ \mathbf{3^2}$ (ii) $\mathbf{2^3}$ (iii) $\mathbf{5}$. (b) $\lim_{h\to 0} [h]^3 = (i) \ \mathbf{0}$ (ii) $\mathbf{3}$ (iii) h^3 . (c) $\lim_{x\to 3} [3x^4 - 2h^2] = (i) \ \mathbf{4^5}$ (ii) $-\mathbf{2(3)^2}$ (iii) $\mathbf{3^5} - 2h^2$. (d) $\lim_{x\to -2} [h \cdot x^2] = (i) \ (h)^4$ (ii) $(-2)^2$ (iii) $h(-2)^2$.

- (e) $\lim_{h\to 0} 3 = (i) \mathbf{0}$ (ii) **3** (iii) **5**. (f) $\lim_{h\to 0} \frac{(x+h)^2 - x^2}{h} = (i) \mathbf{2x}$ (ii) $\mathbf{2h}$ (iii) **0**. Hint: $\frac{(x+h)^2 - x^2}{h} = \frac{x^2 + 2xh + h^2 - x^2}{h} = \frac{2xh + h^2}{h} = 2x + h$
- 12. Application: lawyer fees. Lawyer fees per hour, f(t), versus number of years of experience, t, are given in graph below.

years of experience

Figure 3.8 (Step function: lawyer fees)

(a)	$\lim_{t\to 2^-} f(t) = (i)$ does not exist	(ii) \$250	(iii) \$750	(iv) \$1000
(b)	$\lim_{t\to 2^+} f(t) = (i)$ does not exist	(ii) \$250	(iii) \$750	(iv) \$1000
(c)	$\lim_{t\to 2} f(t) = (i)$ does not exist	(ii) \$250	(iii) \$750	(iv) \$1000
(d)	$\lim_{t\to\infty} f(t) = (i)$ does not exist	(ii) \$250	(iii) \$750	(iv) \$1000

13. Another application: average cost. Monthly fixed costs of using machine I are \$15,000 and marginal costs of manufacturing one widget using machine I is \$20. Consequently, average costs are

$$\overline{C}(x) = \frac{20x + 15000}{x}, \ x > 0$$

(Set WINDOW to 0 700 1 1 0 1000 1 1 before graphing function.)

- (a) $\lim_{x\to 0^-} \overline{C}(x) = (i)$ does not exist (ii) 0 (iii) 20 (iv) ∞
- (b) $\lim_{x\to 0^+} \overline{C}(x) = (i)$ does not exist (ii) 0 (iii) 20 (iv) ∞
- (c) $\lim_{x\to\infty} \overline{C}(x) = (i)$ does not exist (ii) 0 (iii) 20 (iv) ∞ Hint: $\overline{C}(x) = \frac{20x+15000}{x} = \frac{20x}{x} + \frac{15000}{x} = 20 + 15000 \left(\frac{1}{x}\right)$

3.2 Continuity

Roughly speaking, a function is continuous if its graph can be drawn without lifting the pencil from the paper. A function f(x) is continuous at x = c if

Section 2. Continuity (LECTURE NOTES 5)

- 1. f(c) is defined,
- 2. $\lim_{x\to c} f(x)$ exists,
- 3. $\lim_{x \to c} f(x) = f(c)$.

If f(x) is not continuous, it is *discontinuous*. A function is continuous on an *open* interval, (a, b), if it is continuous on every x in the interval; a function is continuous on a *closed* interval, [a, b], if it is continuous

- on the open interval (a, b),
- from the right at x = a,
- from the left at x = b.

Polynomial and exponential functions are continuous for all x; rational functions, $f(x) = \frac{p(x)}{q(x)}$, are continuous for all x where q(x) > 0; logarithmic functions, $f(x) = \log_a x$, a > 0, $a \neq 1$, are continuous for all x > 0; root functions, $f(x) = \sqrt{ax+b}$, $ax + b \ge 0$, are continuous for all x where $ax + b \ge 0$.

Exercise 3.2 (Continuity) Consider the following graphs which demonstrate various different types of functions with *discontinuities*.

1. Checking for continuity: some first examples.

Figure 3.9 (Three types of discontinuity)

(use WINDOW -5 5 1 -5 5 1, use dotted line, use 2nd TEST for in/equalities, For (a), type $y = \frac{(2x-3)(0.5x+1)}{2x-3}$ into $Y_1 =$, For (b), type $y = (2x+4)(X \le -1) + (2x^3 - 4x)(x > -1)(x < 1.5) + (-2x^2 + 2x - 2)(x \ge 1.5)$ into $Y_2 =$ For (c), type y = (-x)(X < 0) + (2)(x = 0) + (x)(x > 0) into $Y_3 =$ (a) Figure (a), $f(x) = \frac{(2x-3)(0.5x+1)}{2x-3}$. Continuous at x = 1.5?

- i. Since $f(1.5) = \frac{(2(1.5)-3)(0.5(1.5)+1)}{2(1.5)-3} = (i)$ 3 (ii) 4 (iii) not defined, at x = 1.5, function f(x) is
 - (i) **continuous**
 - (ii) discontinuous
 - (iii) cannot tell if dis/continuous using only this information
- ii. (i) **True** (ii) **False** Since the first of three conditions for continuity is violated; namely, f(1.5) is not defined (is a removable discontinuity), f(x) is discontinuous at x = 1.5. It is not necessary to check the other two conditions for continuity since it is now known f(x) is discontinuous.
- (b) Figure (b). Continuous at x = 1.5?

$$f(x) = \begin{cases} 2x + 4 & \text{if } x \le -1 \\ 2x^3 - 4x & \text{if } -1 < x < 1.5 \\ -2x^2 + 2x - 2 & \text{if } 1.5 \le x, \end{cases}$$

- i. Since $f(1.5) = -2(1.5)^2 + 2(1.5) 2 =$ (i) **-3.5** (ii) **-4** (iii) **not defined**, so, at x = 1.5, function f(x) is
 - (i) **continuous**
 - (ii) discontinuous
 - (iii) cannot tell if continuous using only this information
- ii. since $\lim_{x\to 1.5^-} f(x) = (i)$ does not exist (ii) -3.5 (iii) 0.75and $\lim_{x\to 1.5^+} f(x) = (i)$ does not exist (ii) -3.5 (iii) 0.75so $\lim_{x\to 1.5} f(x) = (i)$ does not exist (ii) -3.5 (iii) 0.75so, at x = 1.5, function f(x) is
 - (i) **continuous**
 - (ii) discontinuous
 - (iii) cannot tell if continuous using only this information
- iii. (i) **True** (ii) **False** Since the second of three conditions for continuity is violated; namely, $\lim_{x\to 1.5} f(x)$ does not exist, f(x) is discontinuous at x = 1.5. It is not necessary to check the third condition for continuity since it is now known f(x) is discontinuous.
- (c) Figure (c). Continuous at x = 0?

$$f(x) = \begin{cases} x & \text{if } x > 0\\ 2 & \text{if } x = 0\\ -x & \text{if } x < 0 \end{cases}$$

- i. Since f(0) =
 - (i) 0 (ii) 2 (iii) not defined, so, at x = 0, function f(x) is

- (i) **continuous**
- (ii) **discontinuous**

(iii) cannot tell if continuous using only this information

- ii. since $\lim_{x\to 0^-} f(x) = (i)$ does not exist (ii) 0 (iii) 2 and $\lim_{x\to 0^+} f(x) = (i)$ does not exist (ii) 0 (iii) 2 so $\lim_{x\to 0} f(x) = (i)$ does not exist (ii) 0 (iii) 2 so, at x = 0, function f(x) is
 - (i) **continuous**
 - (ii) discontinuous

(iii) cannot tell if continuous using only information so far

- iii. since $\lim_{x\to 0} f(x) = 0$ (i) equals (ii) does not equal f(0) = 2 so, at x = 0, function f(x) is
 - (i) **continuous**
 - (ii) **discontinuous**
 - (iii) cannot tell if continuous using only information so far
- iv. (i) **True** (ii) **False** Since the third of three conditions for continuity is violated; namely, $\lim_{x\to 0} f(x) \neq f(0)$, f(x) is discontinuous at x = 0. It was necessary to check all three conditions for continuity in this case.

2. More checking for continuity, $f(x) = \frac{x^2 + x - 6}{x^2 - 4}$.

- (a) Continuous at x = 2?
 - i. Since $f(2) = \frac{(2)^2 + 2 6}{(2)^2 4} = (i)$ **3** (ii) **4** (iii) **not defined**, at x = 2, function f(x) is
 - (i) **continuous**
 - (ii) discontinuous

(iii) cannot tell if dis/continuous using only this information

ii. (i) **True** (ii) **False** Since the first of three conditions for continuity is violated; namely, f(2) is not defined (is a removable discontinuity),

f(x) is discontinuous at x = 2. It is not necessary to check the other two conditions for continuity since it is now known f(x) is discontinuous.

- (b) Continuous at x = -2?
 - i. Since $f(-2) = \frac{(-2)^2 + (-2) 6}{(-2)^2 4} = (i)$ 3 (ii) 4 (iii) not defined, at x = -2, function f(x) is
 - (i) continuous
 - (ii) discontinuous
 - (iii) cannot tell if dis/continuous using only this information
 - ii. (i) **True** (ii) **False** Since the first of three conditions for continuity is violated; namely, f(-2) is not defined (is a removable discontinuity), f(x) is discontinuous at x = -2. It is not necessary to check the other two conditions for continuity since it is now known f(x) is discontinuous.
- (c) Continuous at x = 1?
 - i. Since $f(1) = \frac{(1)^2 + (1) 6}{(1)^2 4} =$ (i) $\frac{4}{3}$ (ii) $\frac{6}{5}$ (iii) not defined, so, at x = 1, function f(x) is (i) continuous (ii) discontinuous
 - (iii) cannot tell if continuous using only this information
 - ii. since $\lim_{x\to 1^-} f(x) = (i)$ does not exist (ii) $\frac{4}{3}$ (iii) $\frac{6}{5}$ and $\lim_{x\to 1^+} f(x) = (i)$ does not exist (ii) $\frac{4}{3}$ (iii) $\frac{6}{5}$ so $\lim_{x\to 1} f(x) = (i)$ does not exist (ii) $\frac{4}{3}$ (iii) $\frac{6}{5}$ so, at x = 1, function f(x) is
 - (i) continuous
 - (ii) **discontinuous**

(iii) cannot tell if continuous using only information so far

- iii. since $\lim_{x\to 1} f(x) = \frac{4}{3}$ (i) equals (ii) does not equal $f(1) = \frac{4}{3}$ so, at x = 1, function f(x) is
 - (i) **continuous**
 - (ii) **discontinuous**
 - (iii) cannot tell if continuous using only information so far
- iv. (i) **True** (ii) **False** Since all three conditions for continuity are satisfied, function is continuous at x = 1.
- (d) Continuous at x = 3?
 - i. Since $f(3) = \frac{(3)^2 + (3) 6}{(3)^2 4} =$ (i) $\frac{4}{3}$ (ii) $\frac{6}{5}$ (iii) **not defined**, so, at x = 3, function f(x) is

- (i) **continuous**
- (ii) **discontinuous**

(iii) cannot tell if continuous using only this information

- ii. since $\lim_{x\to 3^-} f(x) = (i)$ does not exist (ii) $\frac{4}{3}$ (iii) $\frac{6}{5}$ and $\lim_{x\to 3^+} f(x) = (i)$ does not exist (ii) $\frac{4}{3}$ (iii) $\frac{6}{5}$ so $\lim_{x\to 3} f(x) = (i)$ does not exist (ii) $\frac{4}{3}$ (iii) $\frac{6}{5}$ so, at x = 3, function f(x) is
 - (i) **continuous**
 - (ii) **discontinuous**

(iii) cannot tell if continuous using only information so far

- iii. since $\lim_{x\to 3} f(x) = \frac{4}{3}$ (i) equals (ii) does not equal $f(1) = \frac{4}{3}$ so, at x = 3, function f(x) is
 - (i) **continuous**
 - (ii) discontinuous
 - (iii) cannot tell if continuous using only information so far
- iv. (i) **True** (ii) **False** Since all three conditions for continuity are satisfied, function is continuous at x = 3.

3. And more checking for continuity. Identify all x where f(x) is discontinuous.

- (a) Function $f(x) = \frac{(x-2)(x+2)(x-5)}{(x-2)(x+2)(x-1)}$ is discontinuous at (circle none, one or more) (i) x = -2 (ii) x = 1 (iii) x = 2 (iv) nowhere
- (b) Function $f(x) = \frac{(x-2)(x+3)(x-5)}{(x-2)(x+2)(x-1)}$ is discontinuous at (circle none, one or more) (i) x = -2 (ii) x = 1 (iii) x = 2 (iv) nowhere
- (c) Function $f(x) = \frac{2x^2+2}{x^2+5}$ is discontinuous at (circle none, one or more) (i) x = -2 (ii) x = 1 (iii) x = 2 (iv) nowhere (Hint: Is $x^2 + 5$ ever equal to zero?)
- (d) Function f(x) = 16
 is discontinuous at (circle none, one or more)
 (i) x = -2 (ii) x = 1 (iii) x = 2 (iv) nowhere
- (e) Function $f(x) = 3x^2 + 2x 7$ is discontinuous at (circle none, one or more) (i) x = -2 (ii) x = 1 (iii) x = 2 (iv) nowhere

(f) Function
$$f(x) = 7^x$$

is discontinuous at (circle none, one or more)
(i) $x = -2$ (ii) $x = 1$ (iii) $x = 2$ (iv) nowhere

(g) Function f(x) = ln |x|
is discontinuous at (circle none, one or more)
(i) x = 0 (ii) x = 1 (iii) x = 2 (iv) nowhere

4. Identify k which makes function continuous (not discontinuous!)

(a) Function

$$f(x) = \begin{cases} kx^2 & \text{if } x \leq 3\\ x+3k & \text{if } x > 3 \end{cases}$$

is continuous at (i) $\mathbf{k} = \frac{1}{2}$ (ii) $\mathbf{k} = \frac{1}{3}$ (iii) $\mathbf{k} = \frac{1}{4}$ (iv) nowhere $(kx^2 = x + 3k, \text{ or } kx^2 - 3k = x \text{ or } k(x^2 - 3) = x \text{ or } k = \frac{x}{x^2 - 3} = \frac{3}{3^2 - 3} = \frac{1}{2})$

(b) Function

$$f(x) = \begin{cases} kx^3 & \text{if } x \le 4\\ x + 4k & \text{if } x > 4 \end{cases}$$

is continuous at (i) $\mathbf{k} = \frac{1}{2}$ (ii) $\mathbf{k} = \frac{1}{3}$ (iii) $\mathbf{k} = \frac{1}{4}$ (iv) nowhere $(kx^3 = x + 4k, \text{ or } kx^3 - 4k = x \text{ or } k(x^3 - 4) = x \text{ or } k = \frac{x}{x^3 - 4} = \frac{4}{4^2 - 4} = \frac{1}{3})$

5. Application: lawyer fees. Lawyer fees per hour, f(t), versus number of years of experience, t, are given in graph below.

Figure 3.11 (Step function: lawyer fees)

Lawyer fees f(t) are discontinuous at (circle none, one or more) (i) t = 1 (ii) t = 2 (iii) t = 3 (iv) nowhere

6. Application: intermediate value theorem.

(i) **True** (ii) **False** If a function f(x) is continuous on closed interval [a, b], then f(x) takes on every value between f(a) and f(b). For example, on closed interval [0, 1] where f(0) = -2 and f(1) = 3, continuous function f(x) must take on every value between -2 and 3; for instance the value 0.