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3.7 The Hypergeometric Probability Distribution

The hypergeometric distribution, the probability of y successes when sampling
without15 replacement n items from a population with r successes and N − r fail-
ures, is

p(y) = P (Y = y) =

(

r
y

)(

N − r
n− y

)

(

N
n

) , 0 ≤ y ≤ r, 0 ≤ n− y ≤ N − r,

and its expected value (mean), variance and standard deviation are,

µ = E(Y ) =
nr

N
, σ2 = V (Y ) = n

( r

N

)

(

N − r

N

)(

N − n

N − 1

)

, σ =
√

V (Y ).

Exercise 3.7 (The Hypergeometric Probability Distribution)

1. Hypergeometric: televisions. Seven television (n = 7) tubes are chosen at ran-
dom from a shipment of N = 240 television tubes of which r = 15 are defective.

(a) The probability that y = 4 of the chosen televisions are defective is

p(4) =





r
y









N − r
n− y









N
n





= (choose one)

(i)





15
4



×





225
3









240
4





(ii)





15
3



×





225
3









240
7





(iii)





15
4



×





225
3









240
7





(b) The probability y = 4 of the chosen televisions are defective is
p(4) = (choose one)
(i) 0.0003069 (ii) 0.0005069 (iii) 0.0006069 (iv) 0.0007069.
PRGM HPMF ENTER ENTER (again!) 240 ENTER 7 ENTER 15 ENTER 4 ENTER.

(c) The probability y = 5 of the chosen televisions are defective is
p(5) = (choose one)
(i) 0.000007069 (ii) 0.000009084 (iii) 0.00010069 (iv) 0.00013059.
PRGM HPMF ENTER ENTER (again!) 240 ENTER 7 ENTER 15 ENTER 5 ENTER.

15The hypergeometric assumption of sampling without replacement is more realistic than the
binomial assumption of sampling with replacement.
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(d) The probability at most y = 5 of the chosen televisions are defective is
P (Y ≤ 5) = (choose one)
(i) 0.900 (ii) 0.925 (iii) 0.950 (iv) 0.999.
PRGM HCMF ENTER ENTER (again!) 240 ENTER 7 ENTER 15 ENTER 5 ENTER.

(e) The probability at least y = 1 of the chosen televisions are defective is
P (Y ≥ 1) = 1− P (Y < 1) = 1− P (Y = 0) = (choose one)
(i) 0.367 (ii) 0.435 (iii) 0.545 (iv) 0.633.
PRGM HCMF ENTER ENTER (again!) 240 ENTER 7 ENTER 15 ENTER 0 ENTER,

then subtract from 1.

(f) Expectation. The expected number of defective TVs chosen is

µ = E(Y ) = nr
N

= (7)(15)
240

≈ (circle one)
(i) 0.4375 (ii) 0.7375 (iii) 0.9375 (iv) 1.2375.

(g) Expected cost. If it costs $75 to repair a defective television, the expected
total repair cost is
E(C) = E(75Y ) = 75E(Y ) = 75(0.4375) ≈ (circle one)
(i) $23.75 (ii) $28.75 (iii) $32.82 (iv) $36.37.

(h) Variance. The variance in the number of defective TVs chosen
σ2 = V (Y ) = 7

(

15
240

) (

240−15
240

) (

240−7
240−1

)

= n
(

r
N

) (

N−r
N

) (

N−n
N−1

)

=
(i) 0.29986 (ii) 0.39986 (iii) 0.49986 (iv) 0.69986.

(i) Standard deviation in costs. If it costs $75 to repair a defective television,
the standard deviation in total repair costs is
σ =

√

V (C) =
√

V (75Y ) =
√

752V (Y ) = 75
√

V (Y ) ≈ 75
√
0.39986 ≈

(i) 39.46 (ii) 44.86 (iii) 45.98 (iv) 47.43.

2. Binomial approximation to the hypergeometric: televisions. Seven television
(n = 7) tubes are chosen at random from a shipment of N = 240 television
tubes of which r = 15 are defective.

(a) We sample without replacement; that is, every time a TV is chosen, we do
not replace it to be potentially chosen again. In other words, the chance
of choosing a defective TV, every time a TV is chosen, changes or depends
on the number of defective TVs that were chosen before it.
(i) True (ii) False

(b) If the sample size, n, is small relative to the number of televisions, N ,
n
N

< 0.05, say, the hypergeometric can be approximated by a binomial.
The chance, p = r

N
, of choosing a defective TV, every time a TV is chosen,

does not change “that much” when n
N

< 0.05. Since n
N

= 15
240

= 0.0625 >
0.05, the binomial will probably approximate the hypergeometric (choose
one)
(i) very closely. (ii) somewhat closely. (iii) not closely at all.
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(c) Since p = r
N

= 15
240

= 0.0625 and so a binomial approximation to:
p(5) = (i) 0.00157 (ii) 0.00908 (iii) 0.00106 (iv) 0.00139,
2nd DISTR binompdf 240, 0.0625, 5 ENTER

as compared to 0.000009084 for the hypergeometric,
E(Y ) = np = (7)(0.0625) =
(i) 0.3998 (ii) 0.4375 (iii) 0.5345 (iv) 0.8345,
as compared to 0.4375 for the hypergeometric,
V (Y ) = npq = (7)(0.0625)(1− 0.0625) ≈
(i) 0.3998 (ii) 0.4102 (iii) 0.7345 (iv) 0.8345,
as compared to 0.3999 for the hypergeometric.

(d) In general,

lim
N→∞

(

r
y

)(

N − r
n− y

)

(

N
n

) =

(

n
y

)

pyqn−y

where p = r
N
.

(i) True (ii) False

3. Hypergeometric: capture–recapture. To determine number of perch, N , in Lake
Fishalot, r = 45 are captured at random from the lake, tagged and let go back
into the lake. A short while later, another n = 32 perch are captured, of which
y = 2 are found to be tagged. Approximately how many perch are in Lake
Fishalot?

(a) The chance two of the second group of captured fish are tagged is

p(2) =





r
y









N − r
n− y









N
n





= (choose one)

(i)





32
2



×





N

43









N

3200





(ii)





45
2



×





N − 45
32 − 2









N

32





(iii)





45
43



×





N

2









N

3200





,

(b) Guess N = 500. In this case, chance two of 32 fish chosen are tagged is

p(2) =





r
y









N − r
n− y









N
n





=





45
2



×





500− 45
32− 2









500
32





= (choose one)

(i) 0.24 (ii) 0.26 (iii) 0.29 (iv) 0.32.
PRGM HPMF ENTER ENTER (again!) 500 ENTER 32 ENTER 45 ENTER 2 ENTER.
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(c) Guess N = 750. In this case, chance two of 32 fish chosen are tagged is

p(2) =





r
y









N − r
n− y









N
n





=





45
2



×





750− 45
32− 2









750
32





= (choose one)

(i) 0.24 (ii) 0.26 (iii) 0.29 (iv) 0.32.
PRGM HPMF ENTER ENTER (again!) 750 ENTER 32 ENTER 45 ENTER 2 ENTER.

(d) Guess N = 1000. In this case, chance two of 32 fish chosen are tagged is
p(2) = (choose one) (i) 0.24 (ii) 0.26 (iii) 0.29 (iv) 0.32.
PRGM HPMF ENTER ENTER (again!) 1000 ENTER 32 ENTER 45 ENTER 2 ENTER.

(e) A summary of results are given in the following table.

N 500 750 1000
p(2) 0.24 0.29 0.26

Since the largest chance that 2 of 32 fish chosen are tagged is 0.29, then it
seems from the choices given, the number of fish in Lake Fishalot is
N = (choose one) (i) 500 (ii) 750 (iii) 1000 (iv) 1250.

(f) The approximation to N would improve if we had more than three p(2)
to choose from; however, more effort would be required in calculating the
extra p(2). Differentiating

(

45
2

)

×
(

N − 45
32− 2

)

(

N
32

)

with respect to N and then setting to zero, to locate the maximum N is
also possible, but difficult to do.
(i) True (ii) False

3.8 The Poisson Probability Distribution

The function of the Poisson distribution is

p(y) = P (Y = y) =
λy

y!
e−λ, y = 0, 1, . . . , λ > 0,

where e = 2.71828. . . and expected value, variance and standard deviation are,

µ = E(Y ) = λ, σ2 = V (X) = λ, σ =
√
λ.

Exercise 3.8 (The Poisson Probability Distribution)
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1. Poisson: accidents. There are an average of λ = 3 accidents per year along
the I–95 stretch of highway between Michigan City, Indiana, and St. Joseph,
Michigan.

(a) The chance there are y = 4 accidents is
p(4) = λy

y!
e−λ = (choose one)

(i) 34

4!
e−3 (ii) 34

4!
e−4 (iii) 43

4!
e−4 (iv) 44

3!
e−3

(b) The chance there are y = 4 accidents is
p(4) ≈ (choose one) (i) 0.13 (ii) 0.17 (iii) 0.18 (iv) 0.21.
2nd DISTR poissonpdf( ENTER 3, 4 ) ENTER.

(c) The chance there are y = 3 accidents is
p(3) ≈ (choose one) (i) 0.17 (ii) 0.18 (iii) 0.22 (iv) 0.24.
2nd DISTR poissonpdf( ENTER 3, 3 ) ENTER.

(d) The probability there is at least y = 2 accidents is
P (Y ≥ 2) = 1− P (Y < 2) = 1− P (Y ≤ 1) ≈ (choose one)
p(4) ≈ (choose one) (i) 0.78 (ii) 0.79 (iii) 0.80 (iv) 0.81.
Subtract 2nd DISTR poissoncdf( ENTER 3, 1 ) ENTER from one; notice: poissoncdf, not poissonpdf!

(e) Expectation. The expected number of accidents is
µ = E(Y ) = λ = (circle one)
(i) 1 (ii) 2 (iii) 3 (iv) 4.

(f) Expected cost. If it costs $500,000 per accident, the expected yearly cost is
E(C) = E(500000Y ) = 500000E(Y ) = 500000(3) = (circle one)
(i) $500, 000 (ii) $1, 000, 000 (iii) $1, 500, 000 (iv) $2, 000, 000.

(g) Variance. The variance in the number of accidents per year is
σ2 = V (Y ) = λ = (circle one)
(i) 1 (ii) 2 (iii) 3 (iv) 4.

(h) Standard deviation. Standard deviation in number of accidents per year
σ =

√
λ =

√
3 ≈ (circle one)

(i) 1.01 (ii) 1.34 (iii) 1.73 (iv) 1.96.

2. Poisson: photons. A piece of iron is bombarded with electrons and, as a con-
sequence, releases a number of photons. A number, y, of the photon particles
released hit a magnetic detection field that surround the piece of iron being
tested. It is found that an average of λ = 5 particles hit the magnetic detection
field per microsecond.

(a) The chance y = 2 particles hit the field per microsecond is
p(2) = 52

2!
e−5 ≈ (choose one) (i) 0.06 (ii) 0.07 (iii) 0.08 (iv) 0.09.

2nd DISTR poissonpdf( ENTER 5, 2 ) ENTER
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(b) The chance y = 0 particles hit the field per microsecond is
p(0) ≈ (choose one) (i) 0.007 (ii) 0.008 (iii) 0.08 (iv) 0.009.
2nd DISTR poissonpdf( ENTER 5, 0 ) ENTER

(c) If an average of λ = 5 particles hit the field every one microsecond time
interval, then, in a two microsecond time interval,
λ = 2× 5 = (choose one) (i) 10 (ii) 15 (iii) 20 (iv) 25.

(d) The chance y = 3 particles hit the field in two microseconds is
p(3) = 103

3!
e−10 ≈ (choose one)

(i) 0.007 (ii) 0.008 (iii) 0.009 (iv) 0.010.
2nd DISTR poissonpdf( ENTER 10, 3 ) ENTER

(e) The chance y = 21 particles hit the field in four microseconds (so λ =
4× 5 = 20) is p(21) = 2021

21!
e−20 ≈ (choose one)

(i) 0.073 (ii) 0.085 (iii) 0.093 (iv) 0.101.
2nd DISTR poissonpdf( ENTER 20, 21 ) ENTER

(f) Standard deviation. Standard deviation in number of field hits per mi-
crosecond is σ =

√
λ =

√
5 ≈ (circle one)

(i) 1.51 (ii) 1.74 (iii) 2.13 (iv) 2.24.

3. Poisson approximation of the binomial: photons. The Poisson distribution can
be used to approximate the binomial distribution by letting λ = np. This is a
fairly good approximation if np < 7.

(a) If n = 2000 particles are released by iron per microsecond, and there is a
chance p = 0.005 that a particle hits the surrounding field per microsecond,
then λ = np = 2000(0.005) = (circle one)
(i) 5 (ii) 10 (iii) 15 (iv) 20.
The chance y = 15 particles hit the field in a one microsecond period, is
either (approximate) Poisson16

p(15) = 1015

15!
e−10 ≈ (circle one)

(i) 0.00234 (ii) 0.0347 (iii) 0.0445 (iv) 0.0645
2nd DISTR poissonpdf( ENTER 10, 15 ) ENTER

or (exact) binomial
p(15) = 2000!

15!(2000−15)!
× (0.005)15 × (0.995)1985 ≈ (circle one)

(i) 0.00234 (ii) 0.0346 (iii) 0.0445 (iv) 0.0645.
2nd DISTR binompdf( ENTER 2000, 0.005, 15 ) ENTER

(b) If n = 1000 and p = 0.01, then λ = np = 1000(0.01) = (circle one)
(i) 5 (ii) 10 (iii) 15 (iv) 20.
Either (approximate) Poisson
p(12) = 1012

12!
e−10 ≈ (circle one)

16It is a little surprising Poisson approximation to binomial is close because λ = 2000(0.005) =
10 > 7.
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(i) 0.0948 (ii) 0.1247 (iii) 0.1345 (iv) 0.1445
2nd DISTR poissonpdf( ENTER 10, 12 ) ENTER

or (exact) binomial
p(12) = 2000!

12!(2000−12)!
× (0.005)12 × (0.995)1988 ≈ (circle one)

(i) 0.0952 (ii) 0.1046 (iii) 0.1245 (iv) 0.1345.
2nd DISTR binompdf( ENTER 1000, 0.01, 12 ) ENTER

4. Poisson process: photons. A random variable has a Poisson distribution if the
Poisson process conditions are satisfied. For the photons example, this would
mean the following assumptions are satisfied.

• P (no “hit” occurs in time subinterval)= 1− p

• P (one “hit” occurs in time subinterval)= p

• P (two or more “hits” occurs in time subinterval)= 0

• Occurrence of hit in each time subinterval is independent of occurrence of
event in other nonoverlapping subintervals.

hit hit hitmiss miss miss miss

1            2           3            4            5          6            7

time subintervals

Figure 3.5: Poisson process: sequence of photon hits

(a) The Poisson process assumes all time subintervals are created so small one
and only one photon could hit the magnetic detection field during each
subinterval. During seven time subintervals shown in Figure 3.5, three
hits occur in time subintervals 1, 2 and 7 and four misses occur in time
subintervals 3, 4, 5 and 6.
(i) True (ii) False

(b) The Poisson process assumes the chance a photon hits the magnetic de-
tection field during any one time subinterval is p and the chance it misses
is q = 1 − p. It is impossible to have more than one photon hit the mag-
netic detection field during any time subinterval. Consequently, the time
subintervals are infinitesimally small.
(i) True (ii) False

(c) The Poisson process assumes a hit in each time subinterval is independent
of any other hit in other nonoverlapping subintervals.
(i) True (ii) False
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(d) If there was a 20% chance, p = 0.2, a photon hit the magnetic detection
field during any time subinterval then the chance of y = 3 hits in the n = 7
time subintervals is given by the binomial,

p(3) =

(

n
y

)

pyqn−y =

(

7
3

)

0.230.87−3 ≈

(i) 0.089 (ii) 0.115 (iii) 0.124 (iv) 0.134.
2nd DISTR binompdf( ENTER 7, 0.2, 3 ) ENTER

(e) If a large number of time subintervals are considered; in other words, as, n
gets bigger, in fact, as n → ∞, it becomes increasingly difficult to calculate
the probability of a number of hits using the binomial. In this case, the
poisson is used instead.
(i) True (ii) False

(f) In general,

lim
n→∞

(

n
y

)

pyqn−y =
λy

y!
e−λ

where λ = np.
(i) True (ii) False

3.9 Moments and Moment–Generating Functions

Moment–generating functions, m(t), are useful in calculating the moments of the
distribution of any17 random variable Y . Furthermore, m(t) uniquely identifies any
probability distribution. Consequently, it is possible to use either the probability
distribution or its associated (and possibly easier to mathematically manipulate)
moment–generating function when working with probability distributions.

• The moment of random variable Y taken about the origin is defined by,

µ′

k = E
(

Y k
)

.

• The moment of random variable Y taken about its mean (or kth central moment
of Y ) is defined by,

µk = E((Y − µ)k).

17This is true as long as m(t) exists. The function m(t) exists as long as there is a constant b such
that m(t) < ∞ for |t| < b.
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• In the discrete case, the moment–generating function of Y is defined by,

m(t) = E
(

etY
)

=
∑

y

etyp(y)

=
∑

y

[

1 + ty +
(ty)2

2!
+ · · ·

]

p(y)

=
∑

y

p(y) + t
∑

y

yp(y) +
t2

2!

∑

y

y2p(y) + · · ·

= 1 + tµ′

1 +
t2

2!
µ′

2 + · · ·

• Function m(t) “generates” moments of a distribution by successively differenti-
ating m(t) and evaluating the results at t = 0,

dkm(t)

dtk

]

t=0

= m(k)(0) = µ′

k, k = 1, 2, . . .

Exercise 3.9 (Moments and Moment–Generating Functions)

1. Poisson. Assume moment–generating function for poisson is

m(t) = eλ(e
t
−1).

(a) Determine E(Y ); that is, show E(Y ) = λ using m(t). First notice

E(Y ) = E
(

Y 1
)

= µ′

1.

So

µ′

1 = m(1)(0) =
d1m(t)

dt1

]

t=0

=
deλ(e

t
−1)

dt

]

t=0

=
[

eλ(e
t
−1) · λet

]

t=0
= eλ(e

0
−1)·λe0 =

(i) λ (ii) 2λ (iii) 3λ (iv) λ + 1.

(b) Determine E (Y 2). First notice

E
(

Y 2
)

= µ′

2.

So

µ′

2 = m(2)(0) =
d2m(t)

dt2

]

t=0

=
d2eλ(e

t
−1)

dt2

]

t=0

=
[

eλ(e
t
−1) ·

(

λet
)2

+ eλ(e
t
−1) · λet

]

t=0

which equals eλ(e
0
−1) · (λe0)2 + eλ(e

0
−1) · λe0 = (choose one)

(i) λ (ii) λ2 + λ (iii) λ + 3λ (iv) λ3 + λ.
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(c) Determine V (Y ); that is, show V (Y ) = λ.

V (Y ) = E
(

Y 2
)

− E (Y )2 = µ′

2 − (µ′

1)
2 = (λ2 + λ)− λ2 =

(i) λ (ii) λ2 + λ (iii) λ + 3λ (iv) λ3 + λ.

2. Binomial. Assume moment–generating function for binomial is

m(t) =
(

pet + q
)n

.

(a) Determine E(Y ); that is, show E(Y ) = np using m(t).

µ′

1 = m(1)(0) =
d (pet + q)

n

dt

]

t=0

=
[

n
(

pet + q
)n−1

pet
]

t=0

which equals n (pe0 + q)
n−1

pe0 = (choose one)
(i) λ (ii) np (iii) 2np (iv) npq.

(b) Determine E (Y 2).

µ′

2 = m(2)(0) =
d2 (pet + q)

n

dt2

]

t=0

=
[

n(n− 1)
(

pet + q
)n−1 (

pet
)2

+ n
(

pet + q
)n−1

pet
]

t=0

which is n(n− 1) (pe0 + q)
n−1

(pe0)
2
+ n (pe0 + q)

n−1
pe0 = (choose one)

(i) np(n − 1) (ii) np2(n − 1)2 + np (iii) np2(n − 1) + np.

(c) Determine V (Y ); that is, show V (Y ) = npq.

V (Y ) = E
(

Y 2
)

−E (Y )2 = µ′

2−(µ′

1)
2 = (np2(n−1)+np)−(np)2 = np(1−p) =

(i) n (ii) np (iii) 2np (iv) npq.

3. Geometric. Assume moment–generating function for geometric is

m(t) =
pet

1− qet
.

(a) Determine E(Y ); that is, show E(Y ) = 1
p
using m(t).

µ′

1 = m(1)(0) =
d

dt

(

pet

1− qet

)]

t=0

=

[

pet

(1− qet)2

]

t=0

=

(i) 1
p

(ii) p

p3
(iii) 1

p
(iv) q

p
.

Hint: Since p+ q = 1, p = 1− q.

(b) Determine E (Y 2).

µ′

2 = m(2)(0) =
d2

d2t

(

pet

1− qet

)]

t=0

=

[

(1− qet)
2
pet − 2pet (1− qet) (−qet)

(1− qet)4

]

t=0

=

(i) 1
p

(ii) p

p3
(iii) 1+q

p2
(iv) q−1

p
.
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(c) Determine V (Y ).

V (Y ) = E
(

Y 2
)

− E (Y )2 = µ′

2 − (µ′

1)
2 =

(

1 + q

p2

)

−
(

1

p

)2

=

(i) q

p2
(ii) p

p3
(iii) 1+q

p2
(iv) q−1

p
.

4. Uniqueness of moment–generating functions.

(a) Moment–generating function m(t) = e1(e
t
−1) corresponds to (choose one)

(i) poisson (ii) binomial (iii) geometric (iv) negative binomial.
Consequently, µ = E(Y ) = λ = (circle one)
(i) 1 (ii) 2 (iii) 3 (iv) 4,
and σ =

√
λ ≈ (circle one)

(i) 1.00 (ii) 2.41 (iii) 3.41 (iv) 4.41,
and so P (0 ≤ Y ≤ 3) = P (Y ≤ 3) ≈
(circle one) (i) 0.41 (ii) 0.61 (iii) 0.91 (iv) 0.98.
2nd DISTR poissoncdf( ENTER 1, 3 ) ENTER

and so the probability Y is within two standard deviations of the mean is,

P (|Y − µ| ≤ 2σ) = P (µ− 2σ ≤ Y ≤ µ+ 2σ)

≈ P (1− 2(1) ≤ Y ≤ 1 + 2(1))

= P (−2 ≤ Y ≤ 3)

= P (0 ≤ Y ≤ 3) =

(circle one) (i) 0.41 (ii) 0.61 (iii) 0.91 (iv) 0.98,
2nd DISTR poissoncdf( ENTER 1, 3 ) ENTER

(b) Moment–generating function m(t) = (0.2et + 0.8)
5
corresponds to

(i) poisson (ii) binomial (iii) geometric (iv) negative binomial.
Consequently, µ = E(Y ) = np = (circle one)
(i) 1 (ii) 2 (iii) 3 (iv) 4,
and σ =

√
npq ≈ (circle one)

(i) 0.41 (ii) 0.51 (iii) 0.89 (iv) 1.21,
and so the probability Y is within two standard deviations of the mean is,

P (|Y − µ| ≤ 2σ) = P (µ− 2σ ≤ Y ≤ µ+ 2σ)

≈ P (1− 2(0.89) ≤ Y ≤ 1 + 2(0.89))

= P (−0.78 ≤ Y ≤ 2.78)

= P (0 ≤ Y ≤ 2) =

(circle one) (i) 0.64 (ii) 0.78 (iii) 0.88 (iv) 0.94.
2nd DISTR binomcdf( ENTER 5, 0.2, 2 ) ENTER
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(c) Moment–generating function m(t) = 0.4et

1−0.6et
corresponds to

(i) poisson (ii) binomial (iii) geometric (iv) negative binomial.
Consequently, µ = E(Y ) = 1

p
= (circle one)

(i) 1.5 (ii) 2.5 (iii) 3.5 (iv) 4.5,

and σ =
√

q

p2
≈ (circle one)

(i) 1.41 (ii) 1.51 (iii) 1.39 (iv) 1.94,
and so the probability Y is within two standard deviations of the mean is,

P (|Y − µ| ≤ 2σ) = P (µ− 2σ ≤ Y ≤ µ+ 2σ)

≈ P (2.5− 2(1.94) ≤ Y ≤ 2.5 + 2(1.94))

= P (−1.38 ≤ Y ≤ 6.38)

= P (1 ≤ Y ≤ 6) =

(circle one) (i) 0.64 (ii) 0.78 (iii) 0.87 (iv) 0.95.
2nd DISTR geometcdf( ENTER 0.4, 6 ) ENTER

5. Functions of random variables and associated moment–generating function.

(a) Moment–generating function for m(t) = m(0).
For poisson moment–generating function, m(t) = eλ(e

t
−1),

m(0) = eλ(e
0
−1) =

(choose one) (i) 1 (ii) 2 (iii) 3 (iv) 4.

For geometric moment–generating function, m(t) = pet

1−qet
,

m(0) =
pe0

1− qe0
=

(choose one) (i) 1 (ii) 2 (iii) 3 (iv) 4.

For negative binomial moment–generating function, m(t) =
(

pet

1−qet

)r

,

m(0) =

(

pe0

1− qe0

)r

=

(choose one) (i) 1 (ii) 2 (iii) 3 (iv) 4.
In general, since m(t) = E

(

etY
)

,

m(0) = E
(

e(0)Y
)

= E (1) =

(choose one) (i) 1 (ii) 2 (iii) 3 (iv) 4.
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(b) Moment–generating function for W = 5Y .
In general, since mY (t) = E

(

etY
)

,

mW (t) = E
(

etW
)

= E
(

et(5Y )
)

= E
(

e(5t)Y
)

=

(choose one) (i) 5mY (t) (ii) mY (5t) (iii) mW (5t) (iv) mY (5t
2).

For poisson moment–generating function, mY (t) = eλ(e
t
−1),

mW (t) = mY (5t) =

(choose one) (i) eλ(5et−1) (ii) eλ(e5t−5) (iii) eλ(e5t
2

−1) (iv) eλ(e5t−1).

For negative moment–generating function, mY (t) =
(

pet

1−qet

)r

,

mW (t) = mY (5t) =

(i)
(

pet

1−qet

)r

(ii)
(

5pet

1−qe5t

)r

(iii)
(

pe5t

1−qe5t

)r

(iv)
(

5pe5t

1−5qe5t

)r

.

(c) Moment–generating function for W = 5Y + 3.
In general, since mY (t) = E

(

etY
)

,

mW (t) = E
(

etW
)

= E
(

et(5Y +3)
)

= E
(

e(5t)Y +3t
)

= e3tE
(

e(5t)Y
)

=

(i) 5e3tmY (t) (ii) e3tmY (5t) (iii) e3tmW (5t) (iv) e3tmY (5t
2).

For geometric moment–generating function, mY (t) =
pet

1−qet
,

mW (t) = e3tmY (5t) =

(i) e3t pe3t

1−qet
(ii) e5t pe5t

1−qet
(iii) e3t pet

1−5qet
(iv) e3t pe5t

1−qe5t
.

For negative moment–generating function, mY (t) =
(

pet

1−qet

)r

,

mW (t) = e3tmY (5t) =

(i)
(

pet

1−qet

)r

(ii) e5t
(

5pet

1−qe5t

)r

(iii) e3t
(

pe5t

1−qe5t

)r

(iv) e3t
(

5pe5t

1−5qe5t

)r

.

6. More on moment–generating functions.

(a) Deriving distribution from moment–generating function. What is the dis-
tribution of Y if

m(t) =
1

2
et +

1

3
e2t +

1

6
e2t?

Since

m(t) = E
(

etY
)

=
∑

y

etyp(y) =
1

2
et +

1

3
e2t +

1

6
e3t

this implies when
(i) Y = 1, p(1) = 1

2
;Y = 2, p(2) = 1

3
and when Y = 3, p(3) = 1

6

(ii) Y = 1, p(1) = 1
6
;Y = 2, p(2) = 1

3
and when Y = 3, p(3) = 1

2

(iii) Y = 1, p(1) = 1
3
;Y = 2, p(2) = 1

3
and when Y = 3, p(3) = 1

3
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(b) Deriving binomial moment–generating function.

m(t) = E
(

etY
)

=

n
∑

0

etyp(y)

=
n

∑

0

ety
(

n
y

)

pyqn−y

=
n

∑

0

(

n
y

)

(pet)yqn−y

=
(

pet + q
)n

(c) Summary of moment–generating functions.

DISCRETE p(y) m(t) µ σ2

Binomial

(

n
y

)

pyqn−y (pet + q)n np npq

Poisson e−λ λy

y!
eλ(e

t
−1) λ λ

Geometric qy−1p pet

1−qet
1/p q/p2

Negative Binomial

(

y − 1
r − 1

)

prqy−r

(

pet

1−qet

)r

r/p rq/p2

3.10 Probability–Generating Functions

Not covered.

3.11 Tchebysheff’s Theorem

Tchebysheff’s Theorem states, for random variable Y with finite µ and σ2 and for
k > 0,

P (|Y − µ| < kσ) ≥ 1− 1

k2
or P (|Y − µ| ≥ kσ) ≤ 1

k2
.

These two (equivalent) inequalities allow us to specify (very loose) lower bounds on
probabilities when the distribution is not known.

Exercise 3.11 (Tchebysheff’s Theorem)

1. Tchebysheff’s theorem and binomial: lawyer. A lawyer estimates she wins 40%
(p = 0.4) of her cases. Assume each trial is independent of one another and,
in general, this problem obeys the conditions of a binomial experiment. The
lawyer presently represents 10 (n = 10) defendants.
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(a) The lawyer’s probability of winning is given by the binomial distribution

p(y) =

(

n
y

)

pyqn−y, n = 10, p = 0.4, r = 0, 1, . . . , 10,

with corresponding table of

y 0 1 2 3 4 5 6 7 8 9 10
p(y) 0.006 0.040 0.121 0.215 0.251 0.201 0.111 0.043 0.011 0.002 0.000

For example, the chance of her winning 4 of 10 cases is (choose one)
(i) 0.121 (ii) 0.215 (iii) 0.251 (iv) 0.351.

(b) µ = np = (10)(0.4) = (choose one) (i) 3 (ii) 4 (iii) 5 (iv) 6.

(c) σ =
√
npq =

√

(10)(0.4)(0.6) ≈ (choose one)
(i) 1.32 (ii) 1.55 (iii) 1.67 (iv) 2.03.

(d) According to Tchebysheff’s theorem, the probability the number of wins
is within k = 2 standard deviations of the mean number of wins is at least

P (|Y − µ| < kσ) ≥ 1− 1

k2
= 1− 1

22
=

(i) 0.75 (ii) 0.85 (iii) 0.95 (iv) 0.98.
In actual fact, since µ = 4 and σ ≈ 1.55,

P (|Y − µ| < kσ) = P (µ− kσ < Y < µ+ kσ)

≈ P (4− 2(1.55) < Y < 4 + 2(1.5))

= P (0.9 < Y < 7.1)

= P (1 ≤ Y ≤ 7) =

(i) 0.56 (ii) 0.76 (iii) 0.88 (iv) 0.98.
2nd DISTR binomcdf( ENTER 10, 0.4, 7 ) ENTER

subtract 2nd DISTR binomcdf( ENTER 10, 0.4,0 ) ENTER

Tchebysheff’s approximation, 0.75, is a (very) low bound on the actual
probability, 0.98.

(e) According to Tchebysheff’s theorem, the probability the number of wins is
within k = 2.5 standard deviations of the mean number of wins is at least

P (|Y − µ| < kσ) ≥ 1− 1

k2
= 1− 1

2.52
=

(i) 0.75 (ii) 0.84 (iii) 0.95 (iv) 0.98.
In actual fact, since µ = 4 and σ ≈ 1.55,

P (|Y − µ| < kσ) = P (µ− kσ < Y < µ+ kσ)

≈ P (4− 2.5(1.55) < Y < 4 + 2.5(1.5))

= P (0.125 < Y < 7.875)

= P (1 ≤ Y ≤ 7) =
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(i) 0.56 (ii) 0.76 (iii) 0.88 (iv) 0.98.
Tchebysheff’s approximation, 0.84, is a (very) low bound on the actual
probability, 0.98.

(f) According to Tchebysheff’s theorem, the probability the number of wins
is beyond k = 2.5 standard deviations from the mean number of wins is at
most

P (|Y − µ| ≥ kσ) ≤ 1

k2
=

1

2.52
=

(i) 0.12 (ii) 0.16 (iii) 0.25 (iv) 0.34.
In actual fact, since µ = 4 and σ ≈ 1.55,

P (|Y − µ| ≥ kσ) = P (Y ≤ µ− kσ) + P (Y ≥ µ+ kσ)

≈ P (Y ≤ 4− 2.5(1.55)) + P (Y ≥ 4 + 2.5(1.5))

= P (Y ≤ 0.125) + P (Y ≥ 7.875)

= P (Y = 0) + P (8 ≤ Y ≤ 10)

= 1− P (1 ≤ Y ≤ 7) =

(i) 0.01 (ii) 0.02 (iii) 0.03 (iv) 0.04.
Tchebysheff’s approximation, 0.16, is a (very) high bound on the actual
probability, 0.02.

2. Tchebysheff’s theorem: Ph levels in soil. Assume the Ph levels in soil samples
taken at Sand Dunes Park, Indiana, have a mean and standard deviation of
µ = 10 and σ = 3 respectively.

(a) According to Tchebysheff’s theorem, the probability the Ph level is within
k = 2 standard deviations of the mean Ph level is at least

P (|Y − µ| < kσ) ≥ 1− 1

k2
= 1− 1

22
=

(i) 0.75 (ii) 0.85 (iii) 0.95 (iv) 0.98.
The actual probability cannot be calculated here because the probability
distribution of the Ph levels is unknown in this case. Tchebysheff’s approx-
imation, 0.75, will be a low bound on whatever is the actual probability.

(b) If 400 soil samples are taken, what number will be at least within k = 2
standard deviations of the mean Ph level? Since P (|Y − µ| < 2σ) ≥ 0.75,
at least 0.75(400) = (choose one) (i) 200 (ii) 300 (iii) 400 (iv) 500.

(c) According to Tchebysheff’s theorem, the probability the Ph level is beyond
k = 2.5 standard deviations from the mean Ph level is at most

P (|Y − µ| ≥ kσ) ≤ 1

k2
=

1

2.52
=
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(i) 0.12 (ii) 0.16 (iii) 0.25 (iv) 0.34.
Tchebysheff’s approximation, 0.16, will be a (very) high bound on what-
ever is the actual probability.

(d) According to Tchebysheff’s theorem,

P (5 < Y < 15) = P (µ− kσ < Y < µ+ kσ)

= P

(

10− 5

3
(3) < Y < 10 +

5

3
(3)

)

≥ 1− 1

k2
= 1− 1

(

5
3

)2 =

(circle one) (i) 0.54 (ii) 0.64 (iii) 0.75 (iv) 0.84.

(e) If P (|Y − µ| ≥ kσ) ≤ 0.35, then 1
k2

= 0.35 or k =
√

1
0.35

≈ (choose one)

(i) 1.12 (ii) 1.16 (iii) 1.25 (iv) 1.69.

3.12 Summary


