3.3 Rates of Change

The average rate of change of f(x) with respect to x as x changes from a to b is

$$\frac{f(b) - f(a)}{b - a}$$

The instantaneous rate of change of f(x) at x = a is

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{b \to a} \frac{f(b) - f(a)}{b - a},$$

assuming limit exists and where $\frac{f(a+h)-f(a)}{h}$ and $\frac{f(b)-f(a)}{b-a}$ are different versions of the *difference quotient*. These formulas serve as an intermediate step towards understanding the derivative.

Exercise 3.3 (Rates of Change)

1. Applications: average rate of change.

Figure 3.12 (Examples of average rates of change)

- (a) Figure (a). Supply curve and average rates of change.
 - i. Table version of points in figure (a) is

A. table A

	price p	30	190	425
	supply 1000s	25,000	50,000	$175,\!000$
B. table B				
	price p	25	50	175
	supply 1000s	30,000	190,000	425,000

- ii. Average change in supply with respect to price from (a, f(a)) = (\$30, 25, 000) to (b, f(b)) = (\$190, 50, 000) is $\frac{f(b)-f(a)}{b-a} = \frac{50,000-25,000}{190-30} =$ (i) **0.15625** (ii) **1.5625** (iii) **156.25** units per dollar.
- iii. Average change in supply with respect to price from a = \$190 to b = \$425 is $\frac{f(b)-f(a)}{b-a} = \frac{175,000-50,000}{425-190} =$ (i) **432.91** (ii) **531.91** (iii) **656.25** units per dollar.
- iv. Average change in supply with respect to price from $a = \$30 \text{ to } b = \$425 \text{ is } \frac{f(b)-f(a)}{b-a} = \frac{175,000-25,000}{425-30} = (i) \ \textbf{232.91} \quad (ii) \ \textbf{331.91} \quad (iii) \ \textbf{379.75} \text{ units per dollar.}$
- v. The line that passes through, for example, the points (\$30, 25,000)and (\$190, 50,000) is called a (i) secant (ii) tangent line.
- vi. (i) **True** (ii) **False** In general, slope of secant between two points is called average rate of change.
- vii. Average rate of change (i) changes (ii) remains the same for different points.
- (b) Figure (b). Throwing a ball and average rates of change. Average change in height per second (average *velocity*) of a ball thrown ...
 - i. ... from Q at (a, f(a)) = (0.75, 165) to P at (b, f(b)) = (3.75, 100) is $\frac{f(b)-f(a)}{b-a} = \frac{100-165}{3.75-0.75} \approx$ (i) -21.67 (ii) -11.23 (iii) 21.67 feet per second.
 - ii. ... Q at (a, f(a)) = (0.75, 165) to R at (b, f(b)) = (4.75, 30) is $\frac{f(b)-f(a)}{b-a} = \frac{30-165}{4.75-0.75} \approx$ (i) -51.67 (ii) -41.23 (iii) -33.75 feet per second.
 - iii. Time b a = 3.75 0.75 = 3 seconds associated with Q to P is (i) smaller (ii) larger than b - a = 4.75 - 0.75 = 4 seconds associated with Q to R.
 - iv. As b approaches a closely, average velocity, $\frac{f(b)-f(a)}{b-a}$, approaches slope
 - of *tangent* line (i) L1 (ii) L2 (iii) L3
- (c) More figure (b). Throwing a ball and average rates of change. Suppose graph of function given in Figure (b) is

$$h = 150 + 32t - 12t^2$$

where h is height (in feet) and t is time (in seconds).

i. (i) **True** (ii) **False** A few (time, height) points associated with h are:

time t	1	2	3	4	5
height h	170	166	138	86	10

(Type $150 + 32x - 12x^2$ into Y₁ =, then 2nd TBLSET 0 1 Ask Auto, then 2nd TABLE and type 1 2 3 4 5 into X.)

- ii. Average velocity, a = 1 to b = 2 seconds is $\frac{f(b)-f(a)}{b-a} = \frac{166-170}{2-1} =$ (i) -4 (ii) -16 (iii) -32 feet per second.
- iii. Average velocity, a = 1 to b = 3 seconds is $\frac{f(b)-f(a)}{b-a} = \frac{138-170}{3-1} =$ (i) -4 (ii) -16 (iii) -32 feet per second.
- iv. If b = a + h, then difference quotient becomes

$$\frac{f(b) - f(a)}{b - a} = \frac{f(a + h) - f(a)}{(a + h) - a} = \frac{f(a + h) - f(a)}{h}$$

So, if h = 1 and a = 1, then b = a + h = (i) **2** (ii) **1.5** (iii) **1.25** or if $h = \frac{1}{2}$ and a = 1, then b = a + h = (i) **2** (ii) **1.5** (iii) **1.25** or if $h = \frac{1}{4}$ and a = 1, then b = a + h = (i) **2** (ii) **1.5** (iii) **1.25** so, as h approaches 0, b approaches a

(d) Interest when compounding k Times Per Year: $A = P\left(1 + \frac{r}{k}\right)^{kt}$ Value of \$500 invested with 3% annual interest compounded quarterly is

$$A = P\left(1 + \frac{r}{k}\right)^{kt} = 500\left(1 + \frac{0.03}{4}\right)^{4t} = 500(1.0075)^{4t}.$$

i. (i) **True** (ii) **False** A few (time, dollar) points associated with A are:

	time t	T	2	3	4	5
fı	uture value A	515.17	530.80	546.90	563.50	580.59

(Type $500(1.0075)^{4x}$ into $Y_1 =$, then 2nd TBLSET 0 1 Ask Auto,

then 2nd TABLE and type 1 2 3 4 5 into X.)

- ii. Average change in dollars per year, a = 1 year to b = 2 years is $\frac{f(b)-f(a)}{b-a} = \frac{f(2)-f(1)}{2-1} = \frac{f(2)-f(1)}{1} = \frac{530.80-515.17}{1} =$ (i) **15.63** (ii) **16.11** (iii) **19.57** dollars per year.
- iii. Again, but using the other difference quotient. Average change in dollars per year, a = 1 year to h = 1 year later is $\frac{f(a+h)-f(a)}{h} = \frac{f(1+1)-f(1)}{1} = \frac{f(2)-f(1)}{1} = \frac{530.80-515.17}{1} =$ (i) **15.63** (ii) **16.11** (iii) **19.57** dollars per year.
- iv. Using the other difference quotient again. Average change in dollars per year, a = 1 year to h = 3 years later is $\frac{f(a+h)-f(a)}{h} = \frac{f(1+3)-f(1)}{3} = \frac{f(4)-f(1)}{3} = \frac{563.50-515.17}{3} =$ (i) **15.63** (ii) **16.11** (iii) **19.57** dollars per year.

2. Applications: instantaneous rate of change.

(a) *Throwing a ball.* Suppose graph of function given in figure is

$$y = 150 + 32x - 12x^{2}$$

where y is height (in feet) and x is time (in seconds).

Figure 3.13 (Throwing a ball and instantaneous rates of change)

i. Instantaneous change in feet per second (instantaneous velocity) at Q at (a, f(a)) = (0.75, 165), since a = 0.75, is

$$f(a+h) = f(0.75+h)$$

= 150+32(0.75+h) - 12(0.75+h)²
= 150+24+32h - 12(0.5625+1.5h+h²)
= 150+24+32h - 6.75 - 18h - 12h²
= 167.25+14h - 12h²

and

$$f(a) = f(0.75) = 150 + 32(0.75) - 12(0.75)^2 =$$

(i) **167.25** (ii) **190.75** (iii) **200.75** feet

 \mathbf{SO}

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{f(0.75+h) - f(0.75)}{h}$$
$$= \lim_{h \to 0} \frac{(167.25+14h-12h^2) - 167.25}{h}$$
$$= \lim_{h \to 0} \frac{14h - 12h^2}{h}$$
$$= \lim_{h \to 0} (14 - 12h) =$$

(i) **14** (ii) **15** (iii) **16** feet per second.

ii. Instantaneous velocity at P, where a = 3.75, is

$$f(a+h) = f(3.75+h)$$

= 150 + 32(3.75 + h) - 12(3.75 + h)²
= 150 + 120 + 32h - 12(14.0625 + 7.5h + h²)

$$= 150 + 120 + 32h - 168.75 - 90h - 12h^{2}$$

= 101.25 - 58h - 12h^{2}

and

$$f(a) = f(3.75) = 150 + 32(3.75) - 12(3.75)^2 =$$

(i) **121.25** (ii) **131.25** (iii) **101.25**
so

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{f(3.75+h) - f(3.75)}{h}$$
$$= \lim_{h \to 0} \frac{(101.25 - 58h - 12h^2) - 101.25}{h}$$
$$= \lim_{h \to 0} \frac{-58h - 12h^2}{h}$$
$$= \lim_{h \to 0} (-58 - 12h) =$$

(i)
$$-60$$
 (ii) -62 (iii) -58 feet per second.
iii. A second method: instantaneous velocity at P, where $a = 3.75$, is

$$f(b) = 150 + 32b - 12b^2$$

and

$$f(a) = f(3.75) = 150 + 32(3.75) - 12(3.75)^2 =$$

121.25 (ii) **101.25** (iii) **131.25**

(i) so

$$\lim_{b \to a} \frac{f(b) - f(a)}{b - a} = \lim_{b \to 3.75} \frac{f(b) - f(3.75)}{b - 3.75}$$

$$= \lim_{b \to 3.75} \frac{(150 + 32b - 12b^2) - 101.25}{b - 3.75}$$

$$= \lim_{b \to 3.75} \frac{48.75 + 32b - 12b^2}{b - 3.75}$$

$$= \lim_{b \to 3.75} \frac{(-12b - 13)(b - 3.75)}{b - 3.75} \quad \text{(tricky factorization)}$$

$$= \lim_{b \to 3.75} (-12b - 13) =$$

(i) -58 (ii) -60 (iii) -62 feet per second.

iv. A third method: compounding interest. Value of \$500 invested with 3% annual interest compounded quarterly is

$$y = 500(1.0075)^{4x}.$$

So, at year a = 3

$$f(a+h) = f(3+h) = 500(1.0075)^{4(3+h)} = 500(1.0075)^{12+4h}$$

and

$$f(a) = f(3) = 500(1.0075)^{4(3)} = 500(1.0075)^{12}$$

 \mathbf{SO}

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$$
$$= \lim_{h \to 0} \frac{500(1.0075)^{12+4h} - 500(1.0075)^{12}}{h}$$

so, because it is difficult to compute limit directly, use table method:

h	0.1	0.01	0.001	0.0001	0.00001
$\frac{500(1.0075)^{12+4h} - 500(1.0075)^{12}}{h}$	16.37	16.348	16.34613	16.34591	16.34589
19 4 X 19	-				

(Type $\frac{500(1.0075)^{12+4X}-500(1.0075)^{12}}{X}$ into Y1 =, then 2nd TBLSET 0 1 Ask Auto,

then 2nd TABLE and type 0.1 0.01 0.001 0.0001 0.00001 into X.)

so instantaneous rate is approximately

(i) **16.35** (ii) **16.11** (iii) **15.57** dollars per year.

3. Last example of average and instantaneous rates of change for $y = x^2$.

Figure 3.14 (Average and instantaneous rate of change, $y = x^2$.)

- (a) Average rate of change from a = 2 to b = 5 is $\frac{f(b)-f(a)}{b-a} = \frac{f(5)-f(2)}{5-2} = \frac{25-4}{5-2} = (i) \mathbf{3} \quad (ii) \mathbf{4} \quad (iii) \mathbf{5}$
- (b) Average rate of change where a = 2 and h = 3 is $\frac{f(a+h)-f(a)}{h} = \frac{f(2+3)-f(2)}{3} = \frac{25-4}{3} = (i) 5 \quad (ii) 6 \quad (iii) 7.$
- (c) Instantaneous rate of change for $y = x^2$ at P, where a = 2, is since $f(a+h) = f(2+h) = (2+h)^2 = 4 + 2h + h^2$

and $f(a) = f(2) = (2)^2 = (i)$ **3** (ii) **4** (iii) **5** so

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h}$$
$$= \lim_{h \to 0} \frac{(4+2h+h^2) - 4}{h}$$
$$= \lim_{h \to 0} \frac{2h - h^2}{h}$$
$$= \lim_{h \to 0} (2-h) =$$

(i) **2** (ii) **3** (iii) **4**

(d) Instantaneous rate of change for $y = x^2$ at Q, where a = 5, is since $f(a + h) = f(5 + h) = (5 + h)^2 = 25 + 10h + h^2$ and $f(a) = f(5) = (5)^2 = (i)$ **23** (ii) **24** (iii) **25** so

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{f(5+h) - f(5)}{h}$$
$$= \lim_{h \to 0} \frac{(25+10h+h^2) - 25}{h}$$
$$= \lim_{h \to 0} \frac{10h - h^2}{h}$$
$$= \lim_{h \to 0} (10-h) =$$

(i) 8 (ii) 9 (iii) 10

3.4 Definition of the Derivative

Two equivalent definitions of the *derivative* of f(x) at x are

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{b \to x} \frac{f(b) - f(x)}{b - x}$$

if the limit exists, and where function f'(x) is read "f-prime of x". Function f'(x) is both the instantaneous rate of change of y = f(x) at x and also the slope of the tangent line at x. The tangent line to graph of y = f(x) at point $(x_1, f(x_1))$ is

$$y - f(x_1) = f'(x_1)(x - x_1).$$

If f'(x) exists, f(x) is differentiable and the steps which produce f'(x) is called differentiation. A function f is differentiable if all of the following conditions are satisfied,

- f is continuous,
- f is smooth,
- f does not have a vertical tangent line,

and *non*differentiable is any *one* of the following conditions are satisfied,

- f is discontinuous (there are "jumps", "holes", asymptotes in the function) because a slope cannot be where there is nothing (points b, c and e in Figure);
- *f* is *not* smooth (there is "sharp corner" in the function) because there are different conflicting slopes (but not *one* slope) at this point (point *d* in Figure);
- f has a vertical tangent line because the "run" is zero in the rise/run formula for the slope which would make the slope undefined at this point (point a).

Figure 3.15 (Different types of nondifferentiability)

Exercise 1.4 (Definition of the Derivative)

1. Derivatives of $y = x^2$ at x = -1, 0, 3. since

$$f(x+h) = (x+h)^2 = x^2 + 2xh + h^2$$

and

$$f(x+h) - f(x) = (x^2 + 2xh + h^2) - x^2 =$$

(i) $2x + h^2$ (ii) 2xh + h (iii) $2xh + h^2$ and

$$\frac{f(x+h) - f(x)}{h} = \frac{2xh + h^2}{h} =$$

(i) 2x + h (ii) $2xh^2 + h$ (iii) 2xh + hand

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} (2x+h) =$$

(i) 2 (ii) 2x (iii) h

then derivative f'(-1) = 2(-1) = (i) - 2 (ii) -3 (iii) -4and f'(0) = 2(0) = (i) 0 (ii) 1 (iii) 2 and f'(3) = 2(3) = (i) 7 (ii) 8 (iii) 6

2. Derivatives of $y = x^3$ at x = -1, 0, 3. since

$$f(x+h) = (x+h)^3 = (x+h)(x+h)(x+h) = x^3 + 3x^2h + 3xh^2 + h^3$$

and

$$f(x+h) - f(x) = \left(x^3 + 3x^2h + 3xh^2 + h^3\right) - x^3 =$$

(i) $3x^2 + 3xh^2 + h^3$ (ii) $3x^2h + 3xh^2 + h^3$ (iii) $3xh + 3xh^2 + h^3$ and

$$\frac{f(x+h) - f(x)}{h} = \frac{3x^2h + 3xh^2 + h^3}{h} =$$

(i) $3x + 3x + h^2$ (ii) $3x^2 + 3xh + h^2$ (iii) $3x^2 + 3xh + h$ and

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \left(3x^2 + 3xh + h^2 \right) =$$

(i) **3***x* (ii) **3***x*² (iii) **3***xh*

then derivative $f'(-1) = 3(-1)^2 = (i)$ **3** (ii) **4** (iii) **-3** and $f'(0) = 3(0)^2 = (i)$ **0** (ii) **1** (iii) **2** and $f'(3) = 3(3)^2 = (i)$ **27** (ii) **28** (iii) **29**

3. Derivatives, tangent lines of $y = -3x^2$ at x = -1, 0, 3. since

$$f(x+h) = -3(x+h)^2 = -3(x^2 + 2xh + h^2) = -3x^2 - 6xh - 3h^2$$

and

$$f(x+h) - f(x) = \left(-3x^2 - 6xh - 3h^2\right) - \left(-3x^2\right) =$$

(i) $6xh - 3h^2$ (ii) $-6xh + 3h^2$ (iii) $-6xh - 3h^2$ and

$$\frac{f(x+h) - f(x)}{h} = \frac{-6xh - 3h^2}{h} =$$

(i) -6xh - 3h (ii) -6x + 3h (iii) -6x - 3hand

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \left(-6x - 3h\right) =$$

then derivative f'(-1) = -6(-1) = (i) 7 (ii) 6 (iii) 8 and $y = f(x) = f(-1) = -3(-1)^2 = (i)$ -3 (ii) -4 (iii) -5 and so tangent line at $x_1 = -1$ is

$$y - f(x_1) = f'(x_1)(x - x_1)$$

$$y - f(-1) = f'(-1)(x - (-1))$$

$$y - (-3) = 6(x - (-1))$$

or (i) y + 3 = 6(x + 1) (ii) y = 6x + 3 (iii) y = -6x - 3

and $f'(0) = -6(0) = (i) \mathbf{1}$ (ii) $\mathbf{2}$ (iii) $\mathbf{0}$ and $y = f(x_1) = f(-1) = -3(0)^2 = (i) -\mathbf{3}$ (ii) $-\mathbf{2}$ (iii) $\mathbf{0}$ and so tangent line at $x_1 = 0$ is

$$y - f(x_1) = f'(x_1)(x - x_1)$$

$$y - f(0) = f'(0)(x - (-1))$$

$$y - (0) = 0(x - (0))$$

or (i) y = 0 (ii) y = 6x + 3 (iii) y = -6x - 3

and f'(3) = -6(3) = (i) -19 (ii) -18 (iii) -20and $y = f(x_1) = f(-1) = -3(3)^2 = (i) -28$ (ii) -29 (iii) -27and so tangent line at $x_1 = 3$ is

$$y - f(x_1) = f'(x_1)(x - x_1)$$

$$y - f(3) = f'(3)(x - (3))$$

$$y - (-27) = -18(x - 3)$$

or (i) y + 27 = -18(x - 3) (ii) y = -18x + 27 (iii) y = -6x - 3

100

4. Derivatives, tangent lines of $y = \frac{4}{x}$ at x = -1, 0, 3. since

$$f(x+h) = \frac{4}{x+h}$$

and

$$f(x+h) - f(x) = \frac{4}{x+h} - \frac{4}{x} = \frac{4x}{(x+h)x} - \frac{4(x+h)}{x(x+h)} = \frac{4x - 4(x+h)}{(x+h)x} = \frac{4x - 4(x+h)}{(x+h)$$

and

$$\frac{f(x+h) - f(x)}{h} = \frac{\frac{-4h}{x^2 + xh}}{h} \times \frac{\frac{1}{h}}{\frac{1}{h}} = \frac{-4h}{(x^2 + xh)h} =$$

(i) $\frac{-4}{x + xh}$ (ii) $\frac{-4}{x^2 + xh}$ (iii) $\frac{-4}{x^2 + h}$

and

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \left(\frac{-4}{x^2 + xh}\right) =$$

(i) $\frac{-4}{x}$ (ii) $\frac{-4}{x^2}$ (iii) $\frac{-1}{4x^2}$

then derivative $f'(-1) = \frac{-4}{(-1)^2} = (i) - 4$ (ii) -5 (iii) -6and $y = f(x_1) = f(-1) = \frac{4}{-1} = (i) - 5$ (ii) -4 (iii) -6and so tangent line at $x_1 = -1$ is

$$y - f(x_1) = f'(x_1)(x - x_1)$$

$$y - f(-1) = f'(-1)(x - (-1))$$

$$y - (-4) = -4(x - (-1))$$

or (i) y + 4 = -4(x + 1) (ii) y = -4x - 8 (iii) y = -6x - 3

and $f'(0) = \frac{-4}{(0)^2} = (i)$ does not exist (ii) -5 (iii) -6and $y = f(x_1) = f(0) = \frac{4}{0} = (i)$ does not exist (ii) 5 (iii) 6 and so tangent line at $x_1 = 0$ (i) y = -4x (ii) does not exist

and $f'(3) = \frac{-4}{(3)^2} = (i) -\frac{4}{9}$ (ii) -4 (iii) -9and $y = f(x_1) = f(3) = \frac{4}{3} = (i) 4$ (ii) 3 (iii) $\frac{4}{3}$ and so tangent line at $x_1 = 3$ is

$$y - f(x_1) = f'(x_1)(x - x_1)$$

$$y - f(3) = f'(3)(x - (3))$$

$$y - \left(\frac{4}{3}\right) = -\frac{4}{9}(x - 3)$$

or (i) y + 27 = -18(x - 3) (ii) y = -6x - 3 (iii) $y = -\frac{4}{9}x + \frac{8}{3}$

5. Checking for differentiability: discontinuity (hole).

Figure 3.16 (Differentiability of $f(x) = \frac{(2x-3)(0.5x+1)}{2x-3}$)

(Type $\frac{(2x-3)(0.5x+1)}{2x-3}$ into Y₁ =, WINDOW -5 5 1 -5 5 1, then GRAPH.)

- (a) Function f at point A (i) is (ii) is not differentiable because
 - i. all conditions are satisfied for differentiability here.
 - ii. it is discontinuous (jump, hole, asymptote) here.
 - iii. it is not smooth (has a sharp corner) here,

iv. it has a vertical ("infinite slope") tangent line here.

- (b) Function f at point B (i) is (ii) is not differentiable because
 - i. all conditions are satisfied for differentiability here,
 - ii. it is discontinuous (jump, hole, asymptote) here.
 - iii. it is not smooth (has a sharp corner) here.

iv. it has a vertical ("infinite slope") tangent line here.

and f'(4) = (i) 0.5 (ii) 1.0 (iii) 1.5 (2nd CALC dy/dx, 4 ENTER, gives dy/dx = 0.5.)

6. Checking for differentiability: not smooth (sharp corner).

$$f(x) = |x| = \begin{cases} x & \text{if } x > 0\\ -x & \text{if } x \le 0 \end{cases}$$

102

Figure 3.17 (Differentiability of f(x) = |x|)

(Type (-X)(X < 0) + (0)(X = 0) + (X)(X > 0) into $Y_2 = (not Y_1 = !)$, WINDOW -5 5 1 -5 5 1.)

- (a) Function f at point A (i) is (ii) is not differentiable because
 - i. all conditions are satisfied for differentiability here,
 - ii. it is discontinuous (jump, hole, asymptote) here.
 - iii. it is not smooth (has a sharp corner) here.
 - iv. it has a vertical ("infinite slope") tangent line here.

and f'(-2) = (i) - 1 (ii) 0 (iii) 1

(2nd CALC dy/dx, -2 ENTER, gives dy/dx = -1.)

- (b) Function f at point B (i) is (ii) is not differentiable because
 - i. all conditions are satisfied for differentiability here,
 - ii. it is discontinuous (jump, hole, asymptote) here.
 - iii. it is not smooth (has a sharp corner) here,
 - iv. it has a vertical ("infinite slope") tangent line here.

because, at x = 0, left and right limits of f' do not equal one another:

$$\lim_{h \to 0^{-}} f' = \lim_{h \to 0^{-}} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0^{-}} \frac{|x+h| - |x|}{h} = \lim_{h \to 0^{-}} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^{-}} \frac{-h}{h} = -1$$

$$\neq \lim_{h \to 0^{+}} f' = \lim_{h \to 0^{+}} \frac{|x+h| - |x|}{h} = \lim_{h \to 0^{+}} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^{+}} \frac{h}{h} = 1$$

- (c) Function f at point C (i) is (ii) is not differentiable because
 - i. all conditions are satisfied for differentiability here,
 - ii. it is discontinuous (jump, hole, asymptote) here.
 - iii. it is not smooth (has a sharp corner) here.
 - iv. it has a vertical ("infinite slope") tangent line here.

and f'(2) = (i) - 1 (ii) **0** (iii) **1** (2nd CALC dy/dx, 2 ENTER, gives dy/dx = 1.)

- (d) (i) **True** (ii) **False** Function f(x) is differentiable everywhere *except* at x = 0.
- 7. Checking for differentiability: not smooth (sharp corner).

Figure 3.18 (Differentiability of f(x))

(Type $(X)(X < 1) + (X^2)(X \ge 1)$ into $Y_3 =$, then WINDOW -5 5 1 -5 5 1.)

- (a) Function f at point A (i) is (ii) is not differentiable because
 - i. all conditions are satisfied for differentiability here,
 - ii. it is discontinuous (jump, hole, asymptote) here.
 - iii. it is not smooth (has a sharp corner) here.
 - iv. it has a vertical ("infinite slope") tangent line here.

and f'(0) = (i) - 1 (ii) 0 (iii) 1

- (2nd CALC dy/dx, 0 ENTER, gives dy/dx = 1.)
- (b) Function f at point B (i) is (ii) is not differentiable because
 - i. all conditions are satisfied for differentiability here.
 - ii. it is discontinuous (jump, hole, asymptote) here.
 - iii. it is not smooth (has a sharp corner) here,
 - iv. it has a vertical ("infinite slope") tangent line here.

because, at x = 1, left and right limits of f' do not equal one another:

$$\lim_{h \to 1^{-}} f' = \lim_{h \to 1^{-}} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 1^{-}} \frac{(x+h) - x}{h} = \lim_{h \to 1^{-}} \frac{(1+h) - 1}{h} = \lim_{h \to 1^{-}} \frac{h}{h} = 1$$

$$\neq \lim_{h \to 1^{+}} f' = \lim_{h \to 1^{-}} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 1^{-}} \frac{(1+h)^2 - 1}{h} = \lim_{h \to 1^{-}} \frac{2h + h^2}{h} = 2$$

- (c) Function f at point C (i) is (ii) is not differentiable because
 - i. all conditions are satisfied for differentiability here,
 - ii. it is discontinuous (jump, hole, asymptote) here.
 - iii. it is not smooth (has a sharp corner) here.
 - iv. it has a vertical ("infinite slope") tangent line here.

and f'(2) = (i) **0.54** (ii) **1** (iii) **4** (2nd CALC dy/dx, 2 ENTER, gives $dy/dx \approx 4$.)

- (d) (i) **True** (ii) **False** Function f(x) is differentiable everywhere *except* at x = 0.
- 8. Checking for differentiability: vertical tangent, discontinuity (jump).

$$f(x) = \begin{cases} x^{1/3} & \text{if } -1 < x < 1.5\\ -2x^2 + 2x - 2 & \text{if } 1.5 \le x, \end{cases}$$

Figure 3.19 (Differentiability of f(x))

Type $(x^{1/3})(x < 1.5) + (-2x^2 + 2x - 2)(x \ge 1.5)$ in Y₄ = (use the dotted line), WINDOW -5 5 1 -5 5 1.

- (a) Function f at point A (i) is (ii) is not differentiable because
 - i. all conditions are satisfied for differentiability here.
 - ii. it is discontinuous (jump, hole, asymptote) here.
 - iii. it is not smooth (has a sharp corner) here.
 - iv. it has a vertical ("infinite slope") tangent line here,

because, as $h \to 0$, limit of f' approaches infinity: left limit, by table.

$h \rightarrow$	-0.1	-0.01	-0.001	-0.0001	-0.00001
$f'(x) = \frac{(0+h)^{1/3} - 0^{1/3}}{h} = \frac{h^{1/3}}{h} \to 0$	4.6	21.5	100	464.2	2154.4

(Type 2nd TBLSET 1 1 Ask Auto, then 2nd TABLE -0.1 ENTER -0.01 ENTER and so on.) So $\lim_{x\to 0^-} f'(x) = (i) \infty$ (ii) **0** (iii) $-\infty$. right limit, by table.

2154.4	464.2	100	21.5	4.6	$\leftarrow x$
0.00001	0.0001	0.001	0.01	0.1	$\leftarrow f(x) = \frac{h^{1/3}}{h}$

(Type 2nd TBLSET 1 1 Ask Auto, then 2nd TABLE 0.1 ENTER 0.01 ENTER and so on.) So $\lim_{x\to 0^+} f'(x) = (i) \infty$ (ii) **0** (iii) $-\infty$. In other words, $\lim_{x\to 0} f'(x) = (i) \infty$ (ii) **0** (iii) $-\infty$. (Notice calculator does *not* work: 2nd CALC dy/dx, 0 ENTER, gives dy/dx = 100!.)

- (b) Function f at point B (i) is (ii) is not differentiable because
 - i. all conditions are satisfied for differentiability here,
 - ii. it is discontinuous (jump, hole, asymptote) here,
 - iii. it is not smooth (has a sharp corner) here.

iv. it has a vertical ("infinite slope") tangent line here.

because, at x = 1.5, left and right limits of f do not equal one another: $\lim_{x\to 1.5^-} x^{1/3} = (1.5)^{1/3} \approx (i) \ \mathbf{1.14}$ (ii) $\mathbf{1.13}$ (iii) $\mathbf{1.15}$. $\lim_{x\to 1.5^+} (-2x^2 + 2x - 2) = (i) \ -\mathbf{3.5}$ (ii) $-\mathbf{4}$ (iii) $-\mathbf{5}$.

9. Checking for differentiability; discontinuity (asymptote).

Figure 3.20 (Differentiability of $f(x) = \frac{1}{x^2}$)

Type $(x^{1/3})(x < 1.5) + (-2x^2 + 2x - 2)(x \ge 1.5)$ in Y₅ = (use the dotted line), WINDOW -5 5 1 -5 5 1. Function f at x = 0 (i) is (ii) is not differentiable because

- (a) all conditions are satisfied for differentiability here,
- (b) it is discontinuous (jump, hole, asymptote) here,
- (c) it is not smooth (has a sharp corner) here.
- (d) it has a vertical ("infinite slope") tangent line here.

because, at x = 0, f does not exist (there is an vertical asymptote): $\lim_{x\to 0} \frac{1}{x^2} = (i) \infty$ (ii) $-\infty$ (iii) **0**.

3.5 Graphical Differentiation

Some things to remember when drawing derivatives of functions *graphical*: identify points of function where derivatives

- zero ("peaks and valleys" of a function); for example, at B and D in Figure,
- negative/positive (downward/upwarding sloping parts of a function); for example, positive derivative in region between points A and B, negative in region between points B and D in Figure,
- large (slope of function is either vertical or near-vertical) and also use previous positive/negative information to designate large positive/negative derivative; for example, large negative tangent at C gives minimum derivative in Figure

Figure 3.21 (Drawing graph of a derivative from graph of a function)

Exercise 3.5 (Graphical Differentiation)

1. Graphing derivative function for $f(x) = \frac{(2x-3)(0.5x+1)}{2x-3} = 0.5x + 1, x \neq 1.5.$

Derivative of function is possibility (i) \mathbf{A} (ii) \mathbf{B}

Hint: What is slope of f? Does this slope (derivative) ever change; is it always constant?

2. Graphing derivative function for f(x) = |x|.

$$f(x) = |x| = \begin{cases} x & \text{if } x > 0\\ -x & \text{if } x \le 0 \end{cases}$$

Figure 3.23 (Graphs of f(x) = |x| and possible derivatives f'(x))

Derivative of function is possibility (i) **A** (ii) **B** Hint: What is (constant) derivative (slope) of f when x < 1.5, when x > 1.5? Can derivative exist at x = 1.5?

3. Graphing derivative function for f(x).

$$f(x) = \begin{cases} x & \text{if } x < 1\\ x^2 & \text{if } x \ge 1 \end{cases}$$

function derivative possibility A derivative possibility B $f(x) = x^{2} + y + C + F(x) = x + F(x$

Figure 3.24 (Graphs of f(x) and possible derivatives f'(x))

 $\begin{array}{l} (\text{Type } (X)(X < 1) + (X^2)(X \geq 1) \text{ into } \text{Y}_3 =, \text{WINDOW -5 5 1 -5 5 1.}) \\ \text{Derivative of function is possibility (i) } \textbf{A} \quad (\text{ii}) \ \textbf{B} \\ \text{Calculator: MATH nDeriv(ENTER X ENTER (VARS Y-VARS Function) } \text{Y}_3 \ \text{ENTER X ENTER into } \text{Y}_6 =. \end{array}$

4. Graphing derivative function for f(x).

$$f(x) = \begin{cases} x^{1/3} & \text{if } -1 < x < 1.5\\ -2x^2 + 2x - 2 & \text{if } 1.5 \le x, \end{cases}$$

108

 $\begin{array}{l} (\text{Type } (X^{1/3})(X < 1.5) + (-2X^2 + 2X - 2)(X \geq 1.5) \text{ into } Y_4 =, \text{WINDOW -5 5 1 -5 5 1.}) \\ \text{Derivative of function is possibility (i) } \mathbf{A} \quad \mbox{(ii) } \mathbf{B} \\ \text{Calculator: MATH nDeriv(ENTER X ENTER (VARS Y-VARS Function) } Y_4 ENTER X ENTER into } Y_6 =. \end{array}$

5. Graphing derivative function for $f(x) = \frac{1}{x^2}$.

Figure 3.26 (Graphs of f(x) and possible derivatives f'(x))

(Type $1/X^2$ into $Y_5 =$, WINDOW -5 5 1 -5 5 1.) Derivative of function is possibility (i) **A** (ii) **B**

Calculator: MATH nDeriv(ENTER X ENTER (VARS Y-VARS Function) Y_5 ENTER X ENTER into $Y_6 =$.