
92



Chapter 9

Multivariable Calculus

We will look at the calculus of functions with several variables.

9.1 Functions of Several Variables

Equation z = f(x, y) is a function of two variables if there is a unique z from each
ordered pair (x, y) whose graph is an example of a surface. Pair (x, y) are independent
variables; z is a dependent variable; set of all (x, y) is domain; set of all z = f(x, y) is
range. These definitions extend naturally to more than two dimensions. Graph

ax+ by + cz = d

is a plane if a, b, c are all not 0. Traces take “coordinate axes plane slices” through
surfaces; level curves are ”slices” of planes parallel to coordinate axes” through sur-
faces. There are three types of traces for the z = f(x, y) surface: xy-trace, yx-trace
and xz-trace. Four common equations are

• paraboloid: z = x2 + y2

• ellipsoid: x2

a2
+ y2

b2
+ z2

c2
= 1

• hyperbolic paraboloid: z = x2 − y2

• hyperboloid of two sheets: −x2 − y2 + z2 = 1

Although an ellipsoid is not a function, since there is more than one z for different
(x, y), it is possible in this case to treat the ellipsoid as a level surface for a function
of three variables,

w(x, y, z) =
x2

a2
+

y2

b2
+

z2

c2

where w = 1.

Exercise 9.1 (Functions of Several Variables)

93
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1. Multivariate function evaluation

(a) f(x, y) = 3x+ 4y
For x = 3, y = 5, f(x, y) = f(3, 5) = 3(3)+4(5) = (i) 28 (ii) 29 (iii) 30
Multivariate function calculations not available on calculator, so awkward to deal with:

Y1 = X, Y2 = X, 2nd QUIT, 3 VARS Y-VARS ENTER Y1(3) + 4 VARS Y-VARS ENTER Y2(5)

OR, easiest to just type 3× 3 + 4× 5 = 29

Different Notation.
For x = 3, y = 5, z = 3x+ 4y = (i) 28 (ii) 29 (iii) 30
For x = −3, y = 17, z = 3x+ 4y = (i) 28 (ii) 29 (iii) 59
For x = −3.2, y = −7.5, z = 3x+ 4y = (i) −28.3 (ii) −39.6 (iii) −59

(b) f(x, y) = 3x2 + 4y
f(3, 5) = (i) 38 (ii) 44 (iii) 47

(c) f(x, y) =
√
3x2 + 4y

f(3, 5) = (i) 3.86 (ii) 6.86 (iii) 7.32

(d) f(x, y, z) = 3x2 + 4y + 3z.
f(3, 5,−8) = (i) 22 (ii) 23 (iii) 24

(e) f(x, y, z) = 3x2 + ln y + 3z.
f(3, e2,−8) = (i) 2 (ii) 4 (iii) 5

(f) f(x, y, z) = 3x2(ln y)z.
f(3, e2,−8) = (i) −245 (ii) −432 (iii) −1296

(g) f(a, b, c) = 3a2(ln b)c.
f(3, e2,−8) = (i) −245 (ii) −432 (iii) −1296

(h) f(u, v, w) = 3.
f(3, e2,−8) = (i) 3 (ii) −456 (iii) −1296

(i) f(x1, x2, x3, x4) = 3xx2

1 + x3

3x2
4

.

f(3, 2, 8, 5) = (i) 26.23 (ii) 27.11 (iii) 28.03

(j) f(x1, x2, x3, x4) = 3xx2

1 + 5.
f(3, 2, 8, 5) = (i) 26 (ii) 29 (iii) 32
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(k) Let f(x, y) = 3x2 + 2y2

f(x+ h, y)− f(x, y)

h
=

(3(x+ h)2 + 2y2)− (3x2 + 2y2)

h

=
(3(x2 + 2xh+ h2) + 2y2)− 3x2 − 2y2

h

=
3x2 + 6xh+ 3h2 + 2y2 − 3x2 − 2y2

h
=

(i) 6x + 2h (ii) 6x + 3h (iii) 6xh + 3h2

2. Social Science Application: Teaching
A teacher’s rating, f , is given by

f(n, p, a, t) = 3
a

n
+
√
tp2

where n is number of students, p is teacher preparedness, a is student atten-
dance and t is teacher–student interaction.

So, f(30, 5, 0.85, 5) = (i) 36.23 (ii) 40.05 (iii) 55.99

3. Biology Application: Virus
A virus’s infection rate, f , is given by

f(L, p, R, r, v) =
∣

∣

∣

∣

p

4Lv

(

R− r2
)

∣

∣

∣

∣

where the L is length of incubation period, p is blood pressure, R is radius of
virus, r is time between infections, and v is viscosity.

So, f(10, 120, 0.001, 3, 12) = (i) 2.25 (ii) 3.05 (iii) 8.03

4. Linear equations geometrically: planes in three–dimensional space.
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x
y

z

(2,0,0)
x y

z

(0,-3,0)

x y

z

(0,25,0)(20,0,0) x y

z

x y

z

(0,5,0)(5,0,0)
(20,0,0) (0,25,0)

(0,0,10)

(a) x - 2 = 0 (b) y + 3 = 0

(c) x + y = 5 (d) 5x + 4y = 100 (e) 5x + 4y + 10z = 100

all planes shown in 

octant I only, except in

�gure (b), where plane

shown in octant IV only

Figure 9.1 (Planes in three–dimensional space)

(a) Figure (a).
Equation x = 2 (i) point (ii) line (iii) plane, parallel z–y plane.
Equation x = 2 is equivalent to equation x− 2 = 0.
Plane x− 2 = 0 has x–intercept x = 2 but no y–intercept or z–intercept.

(b) Figure (b).
Equation y + 3 = 0 (i) point (ii) line (iii) plane parallel to z–x plane.
Plane y+3 = 0 has y–intercept y = −3 but no x–intercept or z–intercept.

(c) Figure (c).
Equation x+ y = 5 (i) point (ii) line (iii) plane parallel to z–axis
x–intercept (i) x = 1 (ii) x = 3 (iii) x = 5 (Hint: What is x when y = 0?)

y–intercept (i) y = 1 (ii) y = 3 (iii) y = 5 (Hint: What is y when x = 0?)

(d) Figure (d).
Equation 5x+ 4y = 100 describes point / line / plane parallel to z–axis
x–intercept (i) x = 20 (ii) x = 25 (iii) x = 30
y–intercept (i) y = 20 (ii) y = 25 (iii) y = 30

(e) Figure (e)
Equation 5x+4y+10z = 100 describes a (i) point (ii) line (iii) plane
x–intercept (i) x = 20 (ii) x = 25 (iii) x = 30 (Hint: Set y = 0 and z = 0.)

y–intercept (i) y = 20 (ii) y = 25 (iii) y = 30 (Hint: Set x = 0 and z = 0.)

z–intercept (i) z = 5 (ii) z = 10 (iii) z = 30 (Hint: Set x = 0 and y = 0.)
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5. yz-traces and level curves of 3x+ 2y + 6z = 6.

x
y

z

x
y

z

x y

z

x y

z

x
y

z

x = 0

(2,0,0) x y

z

x y

z

(2,0,0)
x y

z

(1,0,0)

(0,0,0)

x = 1

x = 2

x y

z

(2,0,0) (0,3,0)

(0,0,1)

3x + 2y + 6z = 6

(1,0,0)

+

+

+

(a)

(b)

(c)

intersection of x = 0

and 3x + 2y + 6z = 6

intersection of x = 1

and 3x + 2y + 6z = 6

intersection of x = 2

and 3x + 2y + 6z = 6

=

=

=

(d) trace and level curves on zy plane

y

z

0

1

2y + 6z = 6  trace
2y + 6z = 3  level curve

2y + 6z = 0  level curve

3

}
2y + 6z = 6  trace

2y + 6z = 3  level curve

2y + 6z = 0  level curve

slope = ∆z /∆y = -1/3

Figure 9.2 (yz-traces and level curves of 3x+ 2y + 6z = 6)

(a) Figure (a)
Plane x = 0 (yz-plane) intersects plane 3x+ 2y + 6z = 6 at line
(i) 2y + 6z = 6 (ii) 2y + 6z = 3 (iii) 2y + 6z = 0
since x = 0, 3x+ 2y + 6z = 6 becomes 3(0) + 2y + 6z = 6 or 2y + 6z = 6

The intersecting line an example of a yz-trace.

(b) Figure (b)
Plane x = 1 intersects plane 3x+ 2y + 6z = 6 at line
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(i) 2y + 6z = 6 (ii) 2y + 6z = 3 (iii) 2y + 6z = 0
since x = 1, 3x+ 2y + 6z = 6 becomes 3(1) + 2y + 6z = 6 or 2y + 6z = 3

This intersecting line is another example of a yz-level curve.

(c) Figure (c)
Plane x = 2 intersects plane 3x+ 2y + 6z = 6 at line
(i) 2y + 6z = 6 (ii) 2y + 6z = 3 (iii) 2y + 6z = 0
since x = 2, 3x+ 2y + 6z = 6 becomes 3(2) + 2y + 6z = 6 or 2y + 6z = 0

This third intersecting line is yet another example of a yz-curve.

(d) Figure (d)
The yz-trace and two yz-level curves, all have the same slope:
(i) −1

3
(ii) 1

3
(iii) −2

3
This slope is an example of a partial derivative with respect to y, explained in greater detail later.

6. xz-traces, xy-traces and level curves of 3x+ 2y + 6z = 6.

x y

z

y = 0

x y

z

(2,0,0) (0,3,0)

(0,0,1)

3x + 2y + 6z = 6

+
x

z

0

1

3x + 6z = 6  trace
3x + 6z = 4  level curve

3x + 6z = 2  level curve

2

slope = ∆z /∆x = -1/2
y = 1

y = 2

=
1/3

x y

z

z = 1

x y

z

(2,0,0) (0,3,0)

(0,0,1)

+
x

y

0

3

3x + 2y = 6  trace
3x + 2y = 3  level curve

3x + 2y = 0  level curve

2

z = 1/2

z = 0

=

(a) xz-traces and level curves

(b) xy-traces and level curves

Figure 9.3 (xz-traces, xy-traces and level curves of 3x+ 2y + 6z = 6)

(a) Figure (a)
All the xz-trace and two xz-level curves al have the same slope:
(i) −1

3
(ii) 1

2
(iii) −1

2
This slope is an example of a partial derivative with respect to x, explained in greater detail later.

(b) Figure (b)
The xy-trace and two xy-level curves are drawn on the
(i) xy-plane (ii) xz-plane
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7. xz-traces and xy-traces of other functions.

(a) z = 3x+ 4y

x
y

f(x,y) = z
yz-trace, x = 0:

slope f   = 4
y

xz-trace, y = 0:

slope f   = 3x

(0,2,0)
(2,0,0)

area

area

Figure 9.4 (z = 3x+ 4y)

Slope of plane z = 3x + 4y in y–axis direction (yz-trace, x = 0), since
f(0, y) = 3(0) + 4y = 4y, is

∂f

∂y
= fy(x, y) = 4 · 1y1−1 = (i) 0 (ii) 3 (iii) 4

Slope of plane z = 3x + 4y in x–axis direction (xz-trace, y = 0),
since f(x, 0) = 3x+ 4(0) = 3x, is

∂f

∂x
= fx(x, y) = 3 · 1x1−1 = (i) 0 (ii) 3 (iii) 4

Function z = 3x+ 4y increases faster in

(i) positive y-axis (ii) positive x-axis direction
slope of plane in y–axis direction, fy = 4, is steeper than slope of plane in x–axis direction, fx = 3

Maximum value of z of plane z = 3x+ 4y is

(i) 15 (ii) 20 (iii) does not exist, is ∞
as x → ∞ and y → ∞, z = 3x+ 4y → ∞

Minimum value of z of plane z = 3x+ 4y is

(i) 15 (ii) 20 (iii) does not exist, is −∞
as x → −∞ and y → −∞, z = 3x+ 4y → −∞

If z = 3x + 4y is constrained by −5 ≤ x ≤ 5, −5 ≤ y ≤ 5, then
maximum value of z of plane z = 3x+ 4y is

f(5, 5) = 3(5) + 4(5) = (i) −35 (ii) 20 (iii) 35
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If z = 3x + 4y is constrained by −5 ≤ x ≤ 5, −5 ≤ y ≤ 5, then
minimum value of z of plane z = 3x+ 4y is

f(−5,−5) = 3(−5) + 4(−5) = (i) −35 (ii) 20 (iii) 35

Area under z = 3x + 4y along y-axis direction (yz-trace, x = 0),
between y = 0 and y = 2 is

∫ 2

0
f(0, y) dy =

∫ 2

0
(3(0) + 4y) dy

=
[

4 ·
1

1 + 1
y1+1

]y=2

y=0

=
[

2y2
]y=2

y=0
=

(i) 6 (ii) 8 (iii) 10
also notice 1

2
× base × height = 1

2
× 2 × f(0, 2) = 1

2
× 2× (3(0) + 4(2)) = 8

Area under z = 3x + 4y along x-axis direction (xz-trace, y = 0),
between x = 0 and x = 2 is

∫ 2

0
f(x, 0) dx =

∫ 2

0
(3x+ 4(0)) dx

=
[

3 ·
1

1 + 1
x1+1

]x=2

x=0

=
[

3

2
x2
]x=2

x=0
=

(i) 6 (ii) 8 (iii) 10
also notice 1

2
× base × height = 1

2
× 2 × f(x, 0) = 1

2
× 2× (3(2) + 4(0)) = 6

Volume under plane z = 3x + 4y, between x = 0 and x = 2 and
between y = 0 and y = 2 is

∫ 2
0

∫ 2
0 f(x, y) dx dy =

(i)
∫ 2
0

∫

(3x+ 4y) dx dy

(ii)
∫ ∫ 2

0 (3x+ 4y) dx dy

(iii)
∫ 2
0

∫ 2
0 (3x+ 4y) dx dy

we find out later
∫

2

0

∫

2

0
(3x+ 4y dx dy = 28

(b) z = x2
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x
y

f(x,y)

slope in y direction,

f   = 0y

slope in x direction,

f   = 2x

x

f(x,y)

y

f(x,y)

slope in x direction,

f   = 2x

x

x

slope in y direction,

f   = 0y

f(x,0) = x   
2

slice of f(x,y)

in x-axis direction

f(0,y) = 0  = 0 

slice of f(x,y)

in y-axis direction

2

Figure 9.5 (z = x2)

Slope of it surface z = x2 of along y-axis direction (yz-trace, x = 0), since
f(0, y) = (0)2 = 0, is

∂f

∂y
= fy(x, y) = (i) 0 (ii) 2 (iii) 2x

slope is horizontal, unchanging

Slope of surface z = x2 along x-axis direction (xz-trace, y = 0),
since f(x, 0) = x2, is

∂f

∂x
= fx(x, y) = 2x2−1 = (i) 0 (ii) 2 (iii) 2x

slope varies along this trace

Maximum of surface z = x2 is

(i) 0 (ii) 20 (iii) does not exist, is ∞
as x → ∞, z = x2

→ ∞

Minimum of surface z = x2 is

(i) 0 (ii) 20 (iii) does not exist, is −∞
notice both slopes are zero, fy = 0 and fx = 2(0) = 0, at (x, y) = (0, 0)
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If z = x2 is constrained by −5 ≤ x ≤ 5, −5 ≤ y ≤ 5, then maxi-
mum value of z of surface z = x2 is

f(5, 5) = (5)2 = (i) 0 (ii) −25 (iii) 25

If z = x2 is constrained by −5 ≤ x ≤ 5, −5 ≤ y ≤ 5, then mini-
mum value of z of surface z = x2 is, once again,

f(0, 0) = (0)2 = (i) 0 (ii) −25 (iii) 25

(c) Function f(x, y) = x2 + y2

f(x,y)

y
x

slope in y direction,

f   = 2yyslope in x direction,

f   = 2x

x

f(x,y)

y

f(x,y)

slope in x direction,

f   = 2x

y

x

x

slope in y direction,

f   = 2yy

f(x,y) = x  + y 2 2

f(x,0) = x  + 0  = x 2

slice of f(x,y)

in x-axis direction
slice of f(x,y)

in y-axis direction

2 2
f(0,y) = 0  + y  = y 2 2 2

Figure 9.6 (z = x2 + y2)

Slope of it surface z = x2 + y2 of along y-axis direction (yz-trace, x = 0),
since f(0, y) = (0)2 + y2 = y2, is

∂f

∂y
= fy(x, y) = 2y2−1 = (i) 0 (ii) 2y (iii) 2x

Slope of surface z = x2 + y2 along x-axis direction (xz-trace, y = 0), since
f(x, 0) = x2, is
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∂f

∂x
= fx(x, y) = 2x2−1 = (i) 0 (ii) 2y (iii) 2x

Maximum of surface z = x2 + y2 is

(i) 0 (ii) 20 (iii) does not exist, is ∞
as x → ∞ or y → ∞, z = x2 + y2 → ∞

Minimum of surface z = x2 + y2 is

(i) 0 (ii) 20 (iii) does not exist, is −∞
notice both slopes are zero, fy = 2(0) = 0 and fx = 2(0) = 0, at (x, y) = (0, 0)

If z = x2 + y2 is constrained by −5 ≤ x ≤ 5, −5 ≤ y ≤ 5, then
maximum value of z of surface z = x2 + y2 is

f(5, 5) = (5)2 + (5)2 = (i) 0 (ii) 25 (iii) 50

If z = x2 + y2 is constrained by −5 ≤ x ≤ 5, −5 ≤ y ≤ 5, then
minimum value of z of surface z = x2 + y2 is,

f(0, 0) = (0)2 + (0)2 = (i) 0 (ii) 25 (iii) 50

(d) Function f(x, y) = −4
1+x2+y2
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x

y

f(x,y)

slice of f(x,y)

in x direction

x

f(x,y)

slope in x-axis 

direction

slice of f(x,y)

in y direction

y

f(x,y)

slope in y-axis

direction

Figure 9.7 (z = −4
1+x2+y2

)

Slope of it surface z = −4
1+x2+y2

of along y-axis direction (yz-trace, x = 0),

since f(0, y) = −4
1+(0)2+y2

= −4
1+y2

, is

∂f

∂y
= fy(x, y) =

v(y) · uy(y)− u(y) · vy(y)
[v(y)]2

=
(1 + y2)(0)− (−4)(2y)

(1 + y2)2
=

8y

1 + 2y2 + y4

use quotient rule, where u = −4, v = 1 + y2, so uy = 0, vy = 2y2−1 = 2y

so, at y = −1, fy =
8(−1)

1+2(−1)2+(−1)4
= (i) −2 (ii) −4 (iii) 4

Slope of surface z = −4
1+x2+y2

along x-axis direction (xz-trace, y = 0), since

f(x, 0) = −4
1+x2+(0)2

= −4
1+x2 , is

∂f

∂x
= fx(x, y) =

v(x) · ux(x)− u(x) · vx(x)
[v(x)]2

=
(1 + x2)(0)− (−4)(2x)

(1 + x2)2
=

8x

1 + 2x2 + x4

use quotient rule, where u = −4, v = 1 + x2, so ux = 0, vx = 2x2−1 = 2x

so, at x = −1, fx = 8(−1)
1+2(−1)2+(−1)4

= (i) −2 (ii) −4 (iii) 4

Maximum of surface z = −4
1+x2+y2

is
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(i) 0 (ii) 20 (iii) does not exist, is ∞
as x → ∞ or y → ∞, z = −4

1+x2+y2
→ 0

Minimum of surface z = −4
1+x2+y2

is

(i) −4 (ii) 0 (iii) does not exist, is −∞
as x → 0 and y → 0, z = −4

1+x2+y2
→ −4

If z = −4
1+x2+y2

is constrained by −5 ≤ x ≤ 5, −5 ≤ y ≤ 5, then

maximum value of z of surface z = −4
1+x2+y2

is

f(5, 5) = f(−5,−5) = −4
1+52+52

= (i) −

4
51

(ii) 4
51

(iii) −

4
50

If z = −4
1+x2+y2

is constrained by −5 ≤ x ≤ 5, −5 ≤ y ≤ 5, then

minimum value of z of surface z = −4
1+x2+y2

is,

(i) −4 (ii) 0 (iii) does not exist, is −∞
as x → 0 or y → 0, z = −4

1+x2+y2
→ −4

9.2 Partial Derivatives

We look at partial derivatives in this section. A partial derivative is the slope of
the tangent to the intersection of either the xz-trace or yz-trace to the z = f(x, y)
function, for example. More exactly, for z = f(x, y),

∂z

∂x
= lim

h→0

f(x+ h, y)− f(x, y)

h
∂z

∂y
= lim

h→0

f(x, y + h)− f(x, y)

h

We also look at second–order partial derivatives, including:

∂2z

∂x2
=

∂

∂x

(

∂z

∂x

)

,
∂2z

∂x∂y
=

∂

∂x

(

∂z

∂y

)

,
∂2z

∂y∂x
=

∂

∂y

(

∂z

∂x

)

,
∂2z

∂y2
=

∂

∂y

(

∂z

∂y

)

which can also be written as:

fxx(x, y) = zxx, fyx(x, y) = zyx, fxy(x, y) = zxy, fyy(x, y) = zyy.
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Notice reversal in order of x and y between, for example, notation ∂2z
∂x∂y

and notation fyx(x, y) = zyx.

Second–order partial derivatives are useful in determining a general notion of con-
cavity as well as, more importantly, in identifying maximum and minimum points of
functions.

Exercise 9.2 (Partial Derivatives)

1. Application: health. Assume health, H , of an individual depends on both nu-
trition, N , and exercise, E, according to the following function:

H = 3N + 4E

Health improves
∂H

∂N
= 3 · 1N1−1 + 0 =

(i) 0 (ii) 3 (iii) 4 units when nutrition improves 1 unit.
derivative of 3N with respect to N is 3, but ∂

∂N
(4E) = 0 because 4E is constant with respect to N

Health improves
∂H

∂E
= 0 + 4 · 1E1−1 =

(i) 0 (ii) 3 (iii) 4 units when exercise improves 1 unit.
derivative of 4E with respect to E is 4, but ∂

∂E
(3N) = 0 because 3N is constant with respect to E

2. z = 3x+ 4y

x
y

f(x,y) = z
yz-trace, x = 0:

slope f   = 4
y

xz-trace, y = 0:

slope f   = 3x

Figure 9.8 (z = 3x+ 4y)

first order derivatives
∂z

∂x
= 3 · 1x1−1 + 0 =

(i) 0 (ii) 3 (iii) 4
derivative of 3x with respect to x is 3, but 4y is constant with respect to x, so ∂

∂x
(4y) = 0

which can also be written,
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(a) ∂
∂x
f(x, y) = (i) 0 (ii) 3 (iii) 4

(b) ∂f

∂x
= (i) 0 (ii) 3 (iii) 4

(c) fx(x, y) = (i) 0 (ii) 3 (iii) 4

∂z

∂y
= 0 + 4 · 1y1−1 =

(i) 0 (ii) 3 (iii) 4
derivative of 4y with respect to y is 4, but 3x is constant with respect to y, so ∂

∂y
(3x) = 0

which can also be written,

(a) ∂
∂y
f(x, y) = (i) 0 (ii) 3 (iii) 4

(b) ∂f

∂y
= (i) 0 (ii) 3 (iii) 4

(c) fy(x, y) = (i) 0 (ii) 3 (iii) 4

second order partial derivatives

∂2z

∂x∂x
=

∂

∂x

(

∂z

∂x

)

=
∂

∂x
(3) =

(i) 0 (ii) 3 (iii) 4

which also can be written

(a) ∂2f

∂x∂x
= (i) 0 (ii) 3 (iii) 4

(b) ∂2f

∂x2 = (i) 0 (ii) 3 (iii) 4

(c) fxx(x, y) = (i) 0 (ii) 3 (iii) 4

fxy(x, y) =
∂

∂y

(

∂f

∂x

)

=
∂

∂y
(3) =

(i) 0 (ii) 3 (iii) 4
fxy measures rate of change of slope in y–axis direction, in the x–axis direction

fyx(x, y) =
∂

∂x

(

∂f

∂y

)

=
∂

∂x
(4) =

(i) 0 (ii) 3 (iii) 4
fyx does not always equal fxy ; however, in this course, we will mostly only use equations where fyx = fxy

∂2z

∂y2
=

∂

∂y

(

∂z

∂y

)

=
∂

∂y
(4) =
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(i) 0 (ii) 3 (iii) 4

since both fxx(x, y) = 0 and fyy(x, y) = 0, z = 3x+ 4y is

(i) concave up (ii) concave down (iii) neither–it is linear

3. z = x2

x
y

f(x,y)

slope in y direction,

f   = 0y

slope in x direction,

f   = 2xx

Figure 9.9 (z = x2)

first order derivatives
fx(x, y) = 2x2−1 =

(i) 2 (ii) 2x (iii) 2x2

(a) fx(1, 2) = 2(1) = (i) 0 (ii) 2 (iii) 4

(b) fx(2, 1) = 2(2) = (i) 0 (ii) 2 (iii) 4

(c) fx(2, y) = 2(2) = (i) 0 (ii) 3 (iii) 4

fy(x, y) =
∂

∂y

(

x2
)

=

(i) 0 (ii) 3 (iii) 4
it is zero because x2 is a constant with respect to y; that is, x2 does not change when y changes

(a) fy(1, 2) = (i) 0 (ii) 2 (iii) 4

(b) fy(2, 1) = (i) 0 (ii) 2 (iii) 4

(c) fy(2, y) = (i) 0 (ii) 3 (iii) 4

no matter what the values of (x, y), fy is always zero in this case

second order partial derivatives

∂2z

∂x∂x
=

∂

∂x

(

∂z

∂x

)

=
∂

∂x
(2x) = 2 · 1x1−1 =
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(i) 2 (ii) 2x (iii) 2x2

fxy(x, y) =
∂

∂y

(

∂f

∂x

)

=
∂

∂y
(2x) =

(i) 0 (ii) 3 (iii) 4
again, it is zero because 2x is a constant with respect to y

fyx(x, y) =
∂

∂x

(

∂f

∂y

)

=
∂

∂x
(0) =

(i) 0 (ii) 3 (iii) 4

∂2z

∂y2
=

∂

∂y

(

∂z

∂y

)

=
∂

∂y
(0) =

(i) 0 (ii) 3 (iii) 4

since fxx(x, y) = 2 but fyy(x, y) = 0, f(x, y) = x2 is

(i) concave up in x-axis direction only
(ii) concave up in y-axis direction only
(iii) concave up in both x-axis and y-axis directions

4. z = x2 + y2

f(x,y)

y
x

slope in y direction,

f   = 2yyslope in x direction,

f   = 2x

y

x

Figure 9.10 (z = x2 + y2)

first order derivatives
fx(x, y) = 2x2−1 + 0 =

(i) 2x (ii) 2y (iii) 2x + 2y
derivative of x2 with respect to x is 2x, but derivative of y2 is zero because y2 constant with respect to x

(a) fx(1, 2) = 2(1) = (i) 0 (ii) 2 (iii) 4

(b) fx(2, 1) = 2(2) = (i) 0 (ii) 2 (iii) 4
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fy(x, y) = 0 + 2y2−1 =

(i) 2x (ii) 2y (iii) 2x + 2y
derivative of y2 with respect to y is 2y, but derivative of x2 is zero because x2 constant with respect to y

(a) fy(1, 2) = 2(2) = (i) 0 (ii) 2 (iii) 4

(b) fy(2, 1) = 2(1) = (i) 0 (ii) 2 (iii) 4

determine values of x and y when fx(x, y) = 0 and fy(x, y) = 0

fx(x, y) = 2x = 0, fy(x, y) = 2y = 0

when (x, y) = (i) (0, 2) (ii) (2, 0) (iii) (0, 0)
this point (x, y) = (0, 0) is an example of a critical point, and so a possible extrema point

first order derivatives, using definition

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)

h

= lim
h→0

(x+ h)2 + y2 − (x2 + y2)

h

= lim
h→0

x2 + 2xh + h2 + y2 − x2 − y2

h
= lim

h→0
(2x+ h) =

(i) 2x (ii) 2y (iii) 2x + 2y

fy(x, y) = lim
h→0

f(x, y + h)− f(x, y)

h

= lim
h→0

x2 + (y + h)2 − (x2 + y2)

h

= lim
h→0

x2 + y2 + 2yh+ h2 − x2 − y2

h
= lim

h→0
(2y + h) =

(i) 2x (ii) 2y (iii) 2x + 2y

second order partial derivatives

fxx(x, y) =
∂

∂x

(

∂f

∂x

)

=
∂

∂x
(2x) = 2 · 1x1−1 =
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(i) 0 (ii) 2 (iii) 4

fxy(x, y) =
∂

∂y

(

∂f

∂x

)

=
∂

∂y
(2x) =

(i) 0 (ii) 2 (iii) 4
it is zero because 2x is a constant with respect to y

fyx(x, y) =
∂

∂x

(

∂f

∂y

)

=
∂

∂x
(2y) =

(i) 0 (ii) 2 (iii) 4
it is zero because 2y is a constant with respect to x

fyy(x, y) =
∂

∂y

(

∂f

∂y

)

=
∂

∂y
(2y) = 2 · 1y1−1 =

(i) 0 (ii) 2 (iii) 4

since fxx(x, y) = 2 and fyy(x, y) = 2, f(x, y) = x2 + y2 is

(i) concave up in x-axis direction only
(ii) concave up in y-axis direction only
(iii) concave up in both x-axis and y-axis directions

5. f(x, y) = −4
1+x2+y2

x

y

f(x,y)

Figure 9.11 (z = −4
1+x2+y2

)

first order derivative, fx(x, y)

let u(x, y) = −4 and v(x, y) = 1 + x2 + y2,

then ux(x, y) = (i) 0 (ii) 2x (iii) 2y

and vx(x, y) = 0 + 2x2−1 + 0 = (i) 0 (ii) 2x (iii) 2y
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and so

fx(x, y) =
v(x, y) · ux(x, y)− u(x, y) · vx(x, y)

[v(x, y)]2
=

(1 + x2 + y2)(0)− (−4)(2x)

(1 + x2 + y2)2
=

(i) 8x

(1+x2+y2)2
(ii) 8y

(1+x2+y2)2
(iii) 8xy

(1+x2+y2)2

and so

(a) fx(1, 2) =
8(1)

(1+(1)2+(2)2)2
= (i) 2

9
(ii) 4

9
(iii) 6

9

(b) fx(2, 1) =
8(2)

(1+(2)2+(1)2)2
(i) 2

9
(ii) 4

9
(iii) 6

9

first order derivative, fy(x, y)

let u(x, y) = −4 and v(x, y) = 1 + x2 + y2,

then uy(x, y) = (i) 0 (ii) 2x (iii) 2y

and vy(x, y) = 0 + 0 + 2y2−1 = (i) 0 (ii) 2x (iii) 2y

and so

fy(x, y) =
v(x, y) · uy(x, y)− u(x, y) · vy(x, y)

[v(x, y)]2
=

(1 + x2 + y2)(0)− (−4)(2y)

(1 + x2 + y2)2
=

(i) 8x

(1+x2+y2)2
(ii) 8y

(1+x2+y2)2
(iii) 8xy

(1+x2+y2)2

second order partial derivative, fxx(x, y)

fxx(x, y) =
∂

∂x

(

∂f

∂x

)

=
∂

∂x

(

8x

(1 + x2 + y2)2

)

so let u(x, y) = 8x and v(x, y) = (1 + x2 + y2)2,

then ux(x, y) = 8x1−1 = (i) 8 (ii) 4x(1 + x2 + y2) (iii) 4y(1 + x2 + y2)

vx(x, y) = 2(1+x2+y2)(2x) = (i) 8 (ii) 4x(1+x2+y2) (iii) 4y(1+x2+y2)

and so

fxx(x, y) =
v(x, y) · ux(x, y)− u(x, y) · vx(x, y)

[v(x, y)]2
=

(1 + x2 + y2)(8)− (8x)(4x(1 + x2 + y2))

(1 + x2 + y2)4
=
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(i) 8−32x2

(1+x2+y2)3
(ii) 8−32y2

(1+x2+y2)2
(iii) 8xy

(1+x2+y2)2

second order partial derivative, fxy(x, y)

fxy(x, y) =
∂

∂y

(

∂f

∂x

)

=
∂

∂y

(

8x

(1 + x2 + y2)2

)

so let u(x, y) = 8x and v(x, y) = (1 + x2 + y2)2,

then uy(x, y) = (i) 0 (ii) 4x(1 + x2 + y2) (iii) 4y(1 + x2 + y2)

vy(x, y) = 2(1+x2+y2)(2y) = (i) 8 (ii) 4x(1+x2+y2) (iii) 4y(1+x2+y2)

and so

fxy(x, y) =
v(x, y) · uy(x, y)− u(x, y) · vy(x, y)

[v(x, y)]2
=

(1 + x2 + y2)(0)− (8x)(4y(1 + x2 + y2))

(1 + x2 + y2)4
=

(i) 8−32x2

(1+x2+y2)3
(ii) 8−32y2

(1+x2+y2)3
(iii) −32xy

(1+x2+y2)3

second order partial derivative, fyx(x, y)

fyx(x, y) =
∂

∂x

(

∂f

∂y

)

=
∂

∂x

(

8y

(1 + x2 + y2)2

)

so let u(x, y) = 8y and v(x, y) = (1 + x2 + y2)2,

then ux(x, y) = (i) 0 (ii) 4x(1 + x2 + y2) (iii) 4y(1 + x2 + y2)

vx(x, y) = 2(1+x2+y2)(2x) = (i) 8 (ii) 4x(1+x2+y2) (iii) 4y(1+x2+y2)

and so

fyx(x, y) =
v(x, y) · ux(x, y)− u(x, y) · vx(x, y)

[v(x, y)]2
=

(1 + x2 + y2)(0)− (8y)(4x(1 + x2 + y2))

(1 + x2 + y2)4
=

(i) 8−32x2

(1+x2+y2)3
(ii) 8−32y2

(1+x2+y2)3
(iii) −32xy

(1+x2+y2)3

second order partial derivative, fyy(x, y)

fyy(x, y) =
∂

∂y

(

∂f

∂y

)

=
∂

∂y

(

8y

(1 + x2 + y2)2

)
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so let u(x, y) = 8y and v(x, y) = (1 + x2 + y2)2,

then uy(x, y) = 8y1−1 = (i) 8 (ii) 4x(1 + x2 + y2) (iii) 4y(1 + x2 + y2)

vy(x, y) = 2(1+x2+y2)(2y) = (i) 8 (ii) 4x(1+x2+y2) (iii) 4y(1+x2+y2)

and so

fyy(x, y) =
v(x, y) · uy(x, y)− u(x, y) · vy(x, y)

[v(x, y)]2
=

(1 + x2 + y2)(8)− (8y)(4y(1 + x2 + y2))

(1 + x2 + y2)4
=

(i) 8−32x2

(1+x2+y2)3
(ii) 8−32y2

(1+x2+y2)3
(iii) 8xy

(1+x2+y2)2

6. z = 6x2y + 4exy

first order derivatives

fx(x, y) = 2x2−1(6y) + 4exy(x1−1y) =

(i) 12xy + 4yexy (ii) 6x2 + 4xexy (iii) 2x + 2y
derivative of 6x2y = (6y)x2 with respect to x is 6y · 2x2−1 = 12xy because 6y constant with respect to x

also derivative of exy with respect to x is exy · (x1−1y) = yexy because y is constant with respect to x

fy(x, y) = 6y1−1x2 + 4exy(xy1−1) =

(i) 12xy + 4yexy (ii) 6x2 + 4xexy (iii) 2x + 2y

second order partial derivatives

fxx(x, y) =
∂

∂x

(

∂f

∂x

)

=
∂

∂x
(12xy + 4yexy) = 12x1−1y+0·exy+4y ·exy(x1−1y) =

(i) 0 (ii) 12x + (4 + 4y)xexy (iii) 12y + 4y2exy

use product rule on 4yexy, where u = 4y, v = exy, so ux = 0, vx = exy(x1−1y) = yexy

so v · ux + u · vx = exy · 0 + 4y · yexy = 4y2exy

fxy(x, y) =
∂

∂y

(

∂f

∂x

)

=
∂

∂y
(12xy + 4yexy) = 12xy1−1 + exy · 4 + 4y · xexy =

(i) 0 (ii) 12x + (4 + 4xy)exy (iii) 12y + 4y2exy

use product rule on 4yexy, where u = 4y, v = exy, so uy = 4y1−1 = 4, vy = exy(xy1−1) = xexy

so v · ux + u · vx = exy · 4 + 4y · xexy = (4 + 4y)xexy

fyx(x, y) =
∂

∂x

(

∂f

∂y

)

=
∂

∂x

(

6x2 + 4xexy
)

= 6 · 2x2−1 + exy · 4 + 4x · yexy =
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(i) 12y + (4 + 4xy)exy (ii) 12x + (4 + 4y)xexy (iii) 12y + 4y2exy

use product rule on 4xexy, where u = 4x, v = exy, so ux = 4, vx = exy(x1−1y) = yexy

so v · ux + u · vx = exy · 4 + 4x · yexy = (4 + 4x)yexy

also, notice once again, fxy = fyx; although not always true, this will always be true in this course

fyy(x, y) =
∂

∂y

(

∂f

∂y

)

=
∂

∂y

(

6x2 + 4xexy
)

= 0 + exy · 0 + 4x · xexy =

(i) 4x2exy (ii) 12x + (4 + 4y)xexy (iii) 12y + 4y2exy

use product rule on 4xexy, where u = 4x, v = exy, so uy = 0, vy = exy(xy1−1) = xexy

so v · ux + u · vx = exy · 0 + 4x · xexy = 4x2exy


