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Chapter 9

Multivariable Calculus

We will look at the calculus of functions with several variables.

9.1 Functions of Several Variables

Equation z = f(x,y) is a function of two variables if there is a unique z from each
ordered pair (z,y) whose graph is an example of a surface. Pair (z,y) are independent
variables; z is a dependent variable; set of all (z,y) is domain; set of all z = f(x,y) is
range. These definitions extend naturally to more than two dimensions. Graph

ar +by+cz=d

is a plane if a, b, c are all not 0. Traces take “coordinate axes plane slices” through
surfaces; level curves are "slices” of planes parallel to coordinate axes” through sur-
faces. There are three types of traces for the z = f(x,y) surface: zy-trace, yx-trace
and xz-trace. Four common equations are

e paraboloid: z = x* + 3>

e cllipsouid: 2—; + z—j + i—z =1

e hyperbolic paraboloid: z = x* — y?

o hyperboloid of two sheets: —a? —y?> +22 =1

Although an ellipsoid is not a function, since there is more than one z for different
(x,y), it is possible in this case to treat the ellipsoid as a level surface for a function
of three variables,
2?2 2
wx,y,2)=—+ 75+ —
(2,9,2) = — >

where w = 1.

Exercise 9.1 (Functions of Several Variables)

93
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1. Multivariate function evaluation

(a) f(z,y) = 3w +4y

For x =3,y =5, f(z,y) = f(3,5) = 3(3)+4(5) = (i) 28 (i) 29 (iii) 30

Multivariate function calculations not available on calculator, so awkward to deal with:

Y =X, Yo = X, 2nd QUIT, 3 VARS Y-VARS ENTER Y/ (3) + 4 VARS Y-VARS ENTER Y3(5)

OR, easiest to just type 3 x 3+4 x5 =29

Different Notation.

Forx=3,y=52=3cv+4y = (i) 2
Forx=-3,y=17, z2=3z+4y= (i
Forx =—-32,y=-75,2=3rx+4y

8 (i) 20 (iii) 30
)28 (i) 20 (iii) 59
— (i) —28.3 (i) —39.6
(b) f(x,y) =32%+ 4y
£(3,5) = (i) 38 (i) 44 (iii) 47

(c) flz,y) =32+ 4y
£(3,5) = (i) 3.86 (i) 6.86 (iii) 7.32

(d) f(z,y,z) =32% 4+ 4y + 3=.
f(3,5,—8) = (i) 22 (ii) 23 (i) 24

(e) f(z,y,2) = 32> +1Iny+ 3z.
f(3,€%,—8) = (i) 2 (ii)4 (ii)5

() f(z,y,2) = 32*(Iny)z.
£(3,¢%,-8) = (i) —245 (ii) —432 (iii) —1296

(g) f(a,b,c)=3a*(Inb)c.
f(3,¢2,—8) = (i) —245 (i) —432 (iii) —1296

(h) f(u,v,w)=3.
F(3.¢%,-8)= (i) 3 (i) —456 (iil) —1296

(1) f(x17-772,$3,x4) = 3%%2 + ;73?1
£(3,2,8,5) = (i) 26.23 (i) 27.11 (iii) 28.03

(3) f(x1, 29,23, 24) = 327* + 5.
£(3,2,8,5) = (i) 26 (i) 29 (iii) 32



Section 1. Functions of Several Variables (LECTURE NOTES 6) 95

(k) Let f(x,y) = 32* + 2y

fla+hy) —fley) _ Bl@+h)?’+2y°) — (32° +2°)
h B h
_ (B(a*+2zh + h?) +2y%) — 32° — 2¢°
B h
_ 3a® 4+ 6xh + 307 4 2y — 32 — 2y
— - —

(i) 6z + 2h (i) 6z + 3h (i) 6zh + 3h2

2. Social Science Application: Teaching
A teacher’s rating, f, is given by

f(n,p,a,t) = 3% +Vtp?

where n is number of students, p is teacher preparedness, a is student atten-
dance and t is teacher—student interaction.

So, £(30,5,0.85,5) = (i) 36.23 (ii) 40.05 (iii) 55.99

3. Biology Application: Virus
A virus’s infection rate, f, is given by

f(L,p,R,r,v) = ‘ﬁ (R—’I“2)

where the L is length of incubation period, p is blood pressure, R is radius of
virus, r is time between infections, and v is viscosity.

So, f(10,120,0.001,3,12) = (i) 2.25 (i) 3.05 (iii) 8.03

4. Linear equations geometrically: planes in three—dimensional space.
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all planes shown in
octant | only, except in
figure (b), where plane
shown in octant IV only

X~ (50,0 050 _y

(Qx+y=5 (d) 5x + 4y =100 (e) 5x +4y + 10z= 100

Figure 9.1 (Planes in three-dimensional space)

(a) Figure (a).
Equation z = 2 (i) point (ii) line (iii) plane, parallel z—y plane.
Equation x = 2 is equivalent to equation x — 2 = 0.
Plane © — 2 = 0 has x—intercept x = 2 but no y—intercept or z—intercept.

(b) Figure (b).
Equation y +3 =0 (i) point (ii) line (iii) plane parallel to z—z plane.
Plane y 4+ 3 = 0 has y—intercept y = —3 but no x—intercept or z—intercept.

(¢) Figure (c).
Equation z +y =5 (i) point (ii) line (iii) plane parallel to z—axis
x—intercept (i) x =1 (ii) x =3 (iii) * = 5 (Hint: What is = when y = 0?)
y—intercept (i) y =1 (ii) y =3 (iii) y = 5 (Hint: What is y when = = 0?)

(d) Figure (d).
Equation 5z 4 4y = 100 describes point / line / plane parallel to z—axis
x—intercept (i) x =20 (ii) x = 25 (iii) x = 30
y—intercept (i) y =20 (i) y =25 (iii) y = 30

(e) Figure (e)
Equation 5z + 4y + 10z = 100 describes a (i) point (i) line (iii) plane
x—intercept (i) € =20 (ii) = 25 (iii) @ = 30 (Hint: Set y = 0 and z = 0.)
y—intercept (i) y = 20 (i) y = 25 (iii) y = 30 (Hint: Set 2 =0 and = = 0.)
z-intercept (i) z =5 (ii) 2 =10 (iii) z = 30 (Hint: Set =0 and y = 0.)
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5. yz-traces and level curves of 3x + 2y + 6z = 6.

z z intersection of x =0
and3x+2y+6z=6

2y +6z=6 trace

y X (2,00 (0,3,0; y

X (0,0,0)

3x+2y+6z=6

(a)

intersection of x =1 z
and 3x+2y+6z=6

y

2y + 6z =3 level curve

X (2,00

y

(@ intersection of x = 2 2y +6z=0 level curve

and 3x+2y+6z=6

slope =Az /Ay =-1/3

y
2y +6z=6 trace
2y + 6z =3 level curve
2y +6z=0 level curve

(d) trace and level curves on zy plane

Figure 9.2 (yz-traces and level curves of 3z + 2y + 6z = 6)

(a) Figure (a)
Plane x = 0 (yz-plane) intersects plane 3x + 2y + 6z = 6 at line
(i)2y+6z=6 (ii)2y+62=3 (iii)2y+62=0
since x = 0, 3z 4 2y + 6z = 6 becomes 3(0) 4+ 2y + 6z = 6 or 2y + 6z = 6
The intersecting line an example of a yz-trace.

(b) Figure (b)
Plane x = 1 intersects plane 3z + 2y + 62 = 6 at line
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(i)2y+6z=6 (ii)2y+62=3 (iii)2y+62=0
since ¢ = 1, 3z + 2y 4+ 6z = 6 becomes 3(1) + 2y + 6z =6 or 2y + 6z = 3
This intersecting line is another example of a yz-level curve.

Figure (c)

Plane x = 2 intersects plane 3z + 2y + 62 = 6 at line
(i)2y+6z=6 (ii)2y+62z2=3 (iii)2y+62=0
since x = 2, 3z + 2y + 6z = 6 becomes 3(2) 4+ 2y + 6z = 6 or 2y + 6z = 0

This third intersecting line is yet another example of a yz-curve.

Figure (d)
The yz-trace and two yz-level curves, all have the same slope:
(i) —s (i) 3 (i) —2

This slope is an example of a partial derivative with respect to y, explained in greater detail later.

6. xz-traces, xy-traces and level curves of 3z + 2y + 6z = 6.

slope = Az /Ax=-1/2

y X 200) 030) x
y
3x+2y+62=6 3x+6z=6 trace
3x+6z=4 level curve
3x+6z=2 level curve
(a) xz-traces and level curves
y
3
z
X 200 03,0) y 0 2 X
3x+2y =6 trace

3x+ 2y =3 level curve
3x+2y=0 level curve

(b) xy-traces and level curves

Figure 9.3 (zz-traces, xy-traces and level curves of 3z + 2y + 6z = 6)

Figure (a)
All the xzz-trace and two xz-level curves al have the same slope:
(i) —s (i) 3 (i) —3

This slope is an example of a partial derivative with respect to x, explained in greater detail later.

(b) Figure (b)

The xy-trace and two zy-level curves are drawn on the
(i) xzy-plane (ii) zz-plane
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7. xz-traces and xy-traces of other functions.

(a) z =3z +4y

yz-trace, x = 0:
slope fy =4

xz-trace,y = 0:
slopef, =3

area

Figure 9.4 (z = 3z + 4y)

Slope of plane z = 3z + 4y in y—axis direction (yz-trace, x = 0), since
f(0,y) =3(0) + 4y = 4y, is

9 — f (z,y)=4-1y~t = (i) 0 (i) 3 (iii) 4

Slope of plane z = 3x + 4y in z—axis direction (xz-trace, y = 0),
since f(x,0) =3z +4(0) = 3z, is
U = fo(x,y) =3 -1z'"1 = (1) 0 (i) 3 (iii) 4

Function z = 3z + 4y increases faster in

(i) positive y-axis (ii) positive z-axis direction

slope of plane in y—axis direction, fy =4, is steeper than slope of plane in xz—axis direction, f; =3
Maximum value of z of plane z = 3x + 4y is

(i) 15 (ii) 20 (iii) does not exist, is oo

as ¢ — oo and y — 00, z = 3z + 4y — o0
Minimum value of z of plane z = 3z + 4y is

(i) 15 (ii) 20 (iii) does not exist, is —oco

as ¢ — —oo and y = —o0, z = 3x + 4y - —o©

If z = 3x + 4y is constrained by —5 < x < 5, =5 < y < 5, then
maximum value of z of plane z = 3x + 4y is

£(5,5) = 3(5) +4(5) = (i) —35 (ii) 20 (iii) 35
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If z = 3x 4+ 4y is constrained by =5 < x < 5, =5 < y < 5, then
minimum value of z of plane z = 3x + 4y is

f(=5,-5) =3(—5) +4(-5) = (i) —35 (ii) 20 (iii) 35

Area under z = 3z + 4y along y-axis direction (yz-trace, x = 0),
between y =0 and y = 2 is

[0y = [0+ d

{ L]
1 + 1 y=0

_ 2]¥=2 _

o {Qy :|y:O o

(i) 6 (i) 8 (iii) 10

also notice % X base X height = % x 2 x f(0,2) = % x 2 x (3(0) +4(2)) =8

Area under z = 3z + 4y along z-axis direction (zz-trace, y = 0),
between x = 0 and z = 2 is

/02 f@,0)dz — /02(3x 4+ 4(0)) de

1 1+1 v=2
= |3 —7
(=t
3 ) r=2
N |:§x :|x=O B

(i) 6 (ii)) 8 (iii) 10

also notice 1 x base x height = 1 x 2 x f(z,0) = 3 x 2 x (3(2) +4(0)) =6

Volume under plane z = 3z + 4y, between z = 0 and = 2 and
between y = 0 and y = 2 is [y [ f(x,y) dx dy =

(i) JZ [ (3 + 4y) dz dy
(ii) [ [3(3x + 4y) dx dy
(iti) 7 J2(3z + 4y) dz dy

we find out later f02 f02 Bz + 4y dz dy = 28

(b) 2z = x?



Section 1. Functions of Several Variables (LECTURE NOTES 6) 101

slope in x direction,
fo=2x T

slope iny direction,
- fy=0

slice of f(x,y)

in x-axis direction slope in y direction,
/ fy =0
\ x / y

. L slice of f(x,y)
slope in x direction, X Lo
in y-axis direction
fo=2x

2
f(x,0) =X foy)=0"=0

Figure 9.5 (z = 2?)
Slope of it surface z = 22 of along y-axis direction (yz-trace, z = 0), since

f(0,y) = (0)* =0, is

o = fy(z,y) = () 0 (i) 2 (i) 2

slope is horizontal, unchanging

Slope of surface z = 22 along -axis direction (zz-trace, y = 0),

since f(z,0) = 22, is

O — fo(w,y) =22 = ()0 (i) 2 (iii) 2%

slope varies along this trace
Maximum of surface z = 22 is

(i) 0 (ii)) 20 (iii) does not exist, is oo

aSﬁ—)OO,Z:l‘Q—)OO

Minimum of surface z = z2 is

(i) 0 (ii) 20 (iii) does not exist, is —oo
notice both slopes are zero, f, =0 and f, =2(0) =0, at (z,y) = (0,0)
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If = = 2% is constrained by —5 < z < 5, =5 < y < 5, then maxi-

mum value of z of surface z = x? is

F(5,5)=(5)2= (1) 0 (ii) —25 (iii) 25

If » = 2% is constrained by —5 < z < 5, =5 < y < 5, then mini-

mum value of z of surface z = 22 is, once again,

£(0,0)=(0)2= (i) 0 (i) —25 (iii) 25

(c) Function f(z,y) = 2* + y?

slope in y direction,
slope in x direction, fy=2y

fo=2x

fxy) f(x,y)
slice of f(x,y) ) o
in x-axis direction . e slope in y direction,
slice of f(x,y) fy =2y
in y-axis direction
\ X / '

slope in x direction,
fo=2x

2, 02_ 2
f(x,0) =x“+0"=x f(0,y) = 0%+ y’=y?

Figure 9.6 (z = 22 + y?)

Slope of it surface z = x? + y? of along y-axis direction (yz-trace, z = 0),
since f(0,y) = (0)* 4+ y* = y?, is

o = fy(z,y) =21 = () 0 (ii) 2y (iii) 2

Slope of surface z = x? + y* along z-axis direction (zz-trace, y = 0), since
f(x,0) =22, is
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O — fo(z,y) =22 = () 0 (i) 2y (iii) 2@

Maximum of surface z = 22 + y? is

(i) 0 (ii) 20 (iii) does not exist, is oo

asx%oooryﬁoo,z:x2+y2ﬁoo
Minimum of surface z = 2% + y? is

(i) 0 (ii) 20 (iii) does not exist, is —oco
notice both slopes are zero, f; = 2(0) =0 and f, = 2(0) =0, at (z,y) = (0,0)

If 2 = 22 + y? is constrained by —5 < z < 5, =5 < y < 5, then
maximum value of z of surface z = 2% 4 y? is
f(5,5)=(5)2+(5)?= (i) 0 (ii) 25 (iii) 50
If 2 = 2% + y? is constrained by —5 < z < 5, =5 < y < 5, then

minimum value of z of surface z = 2% 4 2 is,
£(0,0) = (0)2+(0)2= (i) 0 (ii) 25 (iii) 50

(d) Function f(x,y) = ﬁ
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slice of f(x,y)
in y direction

slice of f(x,y) slope in y-axis
in x direction direction

slope in x-axis
direction

Figure 9.7 (z = ﬁ)

Slope of it surface z = ﬁ of along y-axis direction (yz-trace, x = 0),
since f(0,y) = 1+(0_)§l+y2 = 1;32, is
of _ 4 (2,y) = v(y) - uy(y) —uly) vy(y) _ A+9°)0) - (-4)(2y) _ 8y
dy () (1+17)2 L+2)7 +y
use quotient rule, where u = —4, v =1+ 942, s0 uy = 0, vy = 29271 =2y

. - 8(—1) o .
SO, at Yy = —1,fy = m = (1) —2 (11) —4 (111) 4
Slope of surface z = ﬁ along z-axis direction (zz-trace, y = 0), since
f(x7 0) - 1+x;ﬁ(0)2 — 1;;127 iS
OF _ 4 (g = M) @) = u(w) @) _ (14 0)(0) = (~4)x) Sz
_— = T x) = = =
oz Y (@) (1+22)? 1+22% + 2
use quotient rule, where u = —4, v =1+ 22, so uy =0, vy = 222~ =2z

- . 8(—1) o .
SO, at r = —1,fx = m = (1) —2 (11) —4 (111) 4

. _ _4 .
Maximum of surface 2z = T2 18
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(i) 0 (ii)) 20 (iii) does not exist, is oo

> — 0

- =4
as T — 00 Or Yy =00, 2 = Tz

Minimum of surface z = ﬁ is
(i) —4 (ii) 0 (iii) does not exist, is —oo

asz —0and y —» 0, z = 5 — —4

=4
1+aZ+y
If 2 = ﬁ is constrained by -5 < x < 5, =5 < y < 5, then

maximum value of z of surface z =

f(5,5) = f(=5,-5) = =t= = () —55 (i) &5 (i) —5

If 2 = ﬁ is constrained by -5 < x < 5, =5 < y < 5, then

minimum value of z of surface z =

(i) —4 (ii) 0 (iii) does not exist, is —oco

asx—0ory—0, z= 5 — —4

-4
1424y

9.2 Partial Derivatives

We look at partial derivatives in this section. A partial derivative is the slope of
the tangent to the intersection of either the zz-trace or yz-trace to the z = f(x,y)
function, for example. More exactly, for z = f(x,y),

P h
oy ilzli% h

We also look at second—order partial derivatives, including:
Pi_ 0 (0:\ Pe 0 (0:\ 0 (0:\ Pz 0 (0
ox2  Ox \ox )’ 0xdy 0x\Oy)' Oyor Oy \ox)  Oy2 Oy \dy

which can also be written as:

Joa(T,Y) = Zaa, fyw(xay) = Zyz; fa:y(xay) = Zzys fyy(xay) = Zyy-
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. . . 2 .
Notice reversal in order of x and y between, for example, notation aax—azy and notation fyz(z,y) = zyz.

Second-order partial derivatives are useful in determining a general notion of con-
cavity as well as, more importantly, in identifying maximum and minimum points of
functions.

Exercise 9.2 (Partial Derivatives)

1. Application: health. Assume health, H, of an individual depends on both nu-
trition, NV, and exercise, F, according to the following function:

H =3N +4F

Health improves
0H
——=3-IN"'4+0=
N "
(i) 0 (ii) 3 (iii) 4 units when nutrition improves 1 unit.

derivative of 3N with respect to N is 3, but 8% (4F) = 0 because 4F is constant with respect to N

Health improves
oOH
— =0+4-1E""=
oF
(i) 0 (ii) 3 (iii) 4 units when exercise improves 1 unit.
derivative of 4F with respect to F is 4, but % (3N) = 0 because 3N is constant with respect to F

2. z=3x+4y

yz-trace, x = 0:
slope fy =4

xz-trace, y = 0:
slopef, =3

Figure 9.8 (z = 3z + 4y)

first order derivatives
0z
— =312+ 0=
9 T+
(i) 0 (ii)) 3 (iii) 4
Io)

derivative of 3z with respect to x is 3, but 4y is constant with respect to z, so 5 (49) =0

which can also be written,
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(a) gof(z,y)= ()0 (i) 3 (i) 4
(b) 2L = ()0 (i) 3 (iii) 4
(c) falz,y)= (1) 0 (i) 3 (iii) 4

(1) 0 (i) 3 (iii) 4

derivative of 4y with respect to y is 4, but 3z is constant with respect to y, so a—ay Bz)=0

which can also be written,

(a) g f(z,y)= ()0 (i) 3 (i) 4
(b) & =()o (i)3 (i) 4

(¢) fylz,y)= ()0 (i) 3 (iii) 4

second order partial derivatives

o 0 (0:\_ 0
Oxdx  Oxr \oxz | Oz N

(i) 0 (ii)) 3 (iii) 4
which also can be written

(a) Max = ()0 (i) 3 (iii)4
(b) =)0 (i) 3 (i) 4

(c) fxx(xay) (i) 0 (i) 3 (iii) 4

fulei) =5 (5] = 30 -

(i) 0 (i) 3 (i) 4

fzy measures rate of change of slope in y—axis direction, in the z—axis direction

o (9f\ 0
()0 (i) 3 (i) 4

fyz does not always equal fiy; however, in this course, we will mostly only use equations where fyz = fzy

0 ()0,
o2 Oy \dy) oy
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(i) 0 (ii) 3 (iii) 4
since both fu.(z,y) =0 and f,,(z,y) =0, 2 =3z + 4y is

(i) concave up (ii) concave down (iii) neither—it is linear

slope in x direction,
f=2x T

slope in y direction,
~ fy=0

Figure 9.9 (z = 2?)

first order derivatives
fx(x>y) =227 =

(a) f2(1,2) =2(1) = (i) 0 (i) 2 (iii) 4

(b) f2(2,1) =2(2) = () 0 (i) 2 (iii) 4

(€) fa(2,9) =2(2) = () 0 (i) 3 (iii) 4
fy(x,y) = % (x2> =

(i) 0 (i) 3 (i) 4

2

it is zero because z? is a constant with respect to y; that is, 2 does not change when y changes

(a) fy(1,2) = (1) 0 (i) 2 (i) 4
(b) f4(2,1) = (1) 0 (i) 2 (iii) 4
(©) fy(2,y) = (1) 0 (i) 3 (iii) 4

no matter what the values of (z,y), fy is always zero in this case

second order partial derivatives

2
7z _ 9 (8’2):3(2:0):2-1951—1:

O0x0x - 0z \ ox ox
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()2 (i) 2z (iii) 222

L0 (00

(i) 0 (i) 3 (i) 4

again, it is zero because 2z is a constant with respect to y

fy:t(x’y) = % (%) = % (O) =

o0 (0 _ 0
oy2 oy \dy) oy
()0 (i) 3 (i) 4
Since fmc(x7y) = 2 but fyy(x>y) = Oa f(xay) = .%'2 iS
(i) concave up in z-axis direction only

(ii) concave up in y-axis direction only
(iii) concave up in both z-axis and y-axis directions

4, z=x*+y?

slope in y direction,

slope in x direction, fy=2y

f =2x

Figure 9.10 (z = 2% + 3?)
first order derivatives
fw(xay) = 2277 +0=
(i) 2 (i) 2y (i) 2o + 2y
derivative of 22 with respect to z is 2z, but derivative of y2 is zero because y? constant with respect to x
(a) fu(1,2)
(b) f2(2,1)

2(1) = (i) 0 (i) 2 (iii) 4
2(2) = (i) 0 (ii) 2 (iii) 4
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folz,y) =042y =

(i) 2 (i) 2y (i) 2z + 2y

derivative of y? with respect to y is 2y, but derivative of 2 is zero because x
(a) fy(1,2)
(b) fy(2,1)

determine values of x and y when f,(z,y) =0 and f,(z,y) =0

2 constant with respect to y

2(2) = (1) 0 (i) 2 (iii) 4
2(1) = (1) 0 (i) 2 (iii) 4

fx(x>y):2x:0a fy(x>y):2y:0

when (z,y) = () (0,2) (i) (2,0) (i) (0,0)

this point (z,y) = (0,0) is an example of a critical point, and so a possible extrema point

first order derivatives, using definition

o — g0 =10
2 2 (.2 2
I C Ol el i 0)
h—0 h
x>+ 2xh+ R4yt — 2 — P
= lim
h—0 h

= lim(2z+h) =
h—0

(i) 2 (i) 2y (i) 2z + 2y
f(![’,y—i—h) B f(ac,y)

fy(z,y) = lim

h—0 h
2 2 (.2 2
i ® + (y + h)* — (2% + y?)
h—0 h
22+ 2yh + R — 2% —
= lim
h—0 h

= }lliir(l)(Qy +h)=
(i) 2 (i) 2y (i) 2z + 2y

second order partial derivatives

o (0 0
Jaz(2,y) = or <3_£> = 9 (2z) =2 127! =
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()0 (i) 2 (i) 4
o (0f
= — e = — 2 fry
()0 (i) 2 (i) 4
it is zero because 2z is a constant with respect to y
o (of\ &
H(2,y) = 5 (5 ) = = (29) =
bt =5 (5] = - 0
(1) 0 (i) 2 (i) 4
it is zero because 2y is a constant with respect to x
o (of\ @
(1) 0 (i) 2 (i) 4
since fro(z,y) =2 and f,,(z,y) =2, f(x,y) = 2® + y* is
(i) concave up in z-axis direction only

(ii) concave up in y-axis direction only
(iii) concave up in both z-axis and y-axis directions

5. f(2,y) = mre

Figure 9.11 (z = —5+)

first order derivative, f.(z,y)
let u(z,y) = —4 and v(z,y) = 1 + 2 + ?,
then u,(z,y) = (i) 0 (ii) 2z (iii) 2y

and v, (z,y) =0+22*14+0= (1) 0 (i) 2z (i) 2y



112 Chapter 9. Multivariable Calculus (LECTURE NOTES 6)

and so

@) e y) — (@) - vale,y) (142 +33)(0) = (<) (21) _
fx( ay) [v(x,y)]2 (1+x2+y2)2

0) Gy () Gty () Gty

and so
(a) fo(1,2) = ﬁ = (i) 2
0) 21 = 22 ()2 (i) 3 (i) 8

first order derivative, f,(z,y)
let u(z,y) = —4 and v(z,y) = 1 + 2% + y?,
then u,(z,y) = (1) 0 (i) 2z (ili) 2y

and v,(z,y) =0+ 0+2y>1 = (1) 0 (i) 2z (iii) 2y

and so

¥ (I y) _ U('T’y) ’ Uy($,y) — u(w,y) : Uy(x>y) _ (1 + 22+ y2)(0) — (—4)(2y) _
o [v(z,y))? (1422 +y2)°

: 8x . 8 8

0 Grerrmr ) Graster () sy

second order partial derivative, fu.(z,y)
Frala,y) = O (ofN_Oo(_ 8x
w2\ Y) = or \ox ) Ox (1—|—x2—|—y2)2
so let u(z,y) = 8z and v(z,y) = (1 + 2% + y?)?,
then u,(z,y) =821 = (1) 8 (i) 4 (1 + x® + y?) (iii) 4y(1 + z? + y?)
valy) = 21427 2)(20) = () 8 (i) 4w (1+a?+y?) (i) dy(1+a?+y?)
and so

Felr= e i} (et ) }
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. 8—32x2 - 8—32y2 8xy
() (A+x244y2)3 (1) (14z24y2)> (111) (14+z2+y2)>

second order partial derivative, fu,(z,y)

9 (of\ 9 8
Fole) =5, \or )~ v w7

so let u(z,y) = 8z and v(z,y) = (1 + 2% + y?)?,
then u,(z,y) = (1) 0 (i) 4x(1 + x* + y?) (iii) 4y(1 + =% + y?)

vy(r,y) = 2(1+a%+y*)(2y) = (1) 8 (i) 4w(1+2*+y?) (i) 4y(1+2*+y?)

and so

Fo (o, y) = LY U@ y) —ul@y) vy (T y) (1422 +3*)(0) — (82)(4y(1 + 2 +¢?)) _
v [w(z, )P (1+22+ 92

. 3222 .. _ 3242 _322

) T ) G () Gy

second order partial derivative, f,.(z,y)
Ffoolz,y) = O(UN_O (8%
yx YY) = ax ay - ax (1+x2+y2)2
so let u(z,y) = 8y and v(z,y) = (14 2 + y?)?,
then u,(z,y) = (i) 0 (i) 4x(1 + x? + y?) (iii) 4y(1 + = + y?)

ve(m,y) = 2(1+22+9%)(2z) = (1) 8 (ii) 4z (1+=x2+y?) (iii) 4y (1+x>+y?)

and so
by = M) e y) —elwy) y) (24 )0) = G2+ )
" 7 [/U(x7 y)]2 (1 + .TZ + y2)4
1 - :Bz 13 —_— 2 oo — x
() Gherey () Gharry () Grorress

second order partial derivative, fy,(x,y)

N CTAN 8y
Pule) =55 \ay) = oy \ T vy
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so let u(z,y) = 8y and v(z,y) = (1 + 2% + y?)?,

then u,(z,y) =8yt = (i) 8 (i) 4x(1 + x* + y?) (i) 4y(1 + =% + y?)

vy(z,y) = 2(14+2°+y%) (2y) = (1) 8 (i) dx(1+=x*+y?) (i) 4y(1+x*+y?)

and so

fo(ay) = M) (@ y) —uwy) e y) (1t yR)() - Sy (0t 2® 7))
e (@, y)’ (1+ 22 +y?)"
. 8—32x2 . 8—32y2 8xy

(1) (1+w2+y2)3 (H) (1+w2+y2)3 (111) (1+w2+y2)2

z = 622y + 4e™

first order derivatives

folz,y) = 20*7 1 (6y) + 4™ (21 1y) =

(i) 12zy + 4ye™ (i) 6x + 4xe® (iii) 2z + 2y

derivative of 62y = (6y)z? with respect to z is 6y - 222~ 1 = 12zy because 6y constant with respect to x

also derivative of e*¥ with respect to x is eV - (xl’ly) = ye®Y because y is constant with respect to x

fylz y) = 6y’ a? +de™(2y' ™) =

(i) 12xy + 4ye™ (i) 62> + 4ze™ (iii) 2z + 2y

second order partial derivatives

of

0
fuz(z,y) = B (01’) B (12zy + 4ye™) = 122" 1y 40" +4y-e” Y(x ly) =

(1) 0 (i) 12z + (4 + 4y)ze™ (iii) 12y + 4yZe™
use product rule on 4ye®™, where u = 4y, v = e*¥, 50 uy = 0, vy = e®Y(z1 7!

SO U Uz +U- v = €TV -0+ 4y - yeTV = 4y2e®Y

of

0
fey(z,y) = oy (835) 3y (12zy + 4ye™) = 122y" 1 + ™ - 4 + 4y - we™ =

(1) 0 (i) 12& + (4 + 4dzy)e™ (i) 12y + 4y2e?¥

use product rule on 4ye®?, where u = 4y, v = e"Y, s0 uy = 4yt-1
SO V- Uz + U vy =¥V -4+ 4y - xe®V = (4 4 4y)ze®Y

af\ 9

Jua(9) = o <8y> o

=4, vy = e (zy

171) = re®Y

(6x + 4xe” ):6-2x2_1+e’”y-4+4x-ye"3y:
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(i) 12y + (4 + 4zy)e®™ (i) 12z + (4 + 4y)xe™ (i) 12y + 4y?e™
use product rule on 4ze™, where u = 4z, v = €®Y, 50 uy = 4, vy = €Y (x!7ly) = ye®¥
SO V- Uz + U vy = €e*Y -4+ 4z - ye®Y = (4 + 4x)ye®Y

also, notice once again, fzy = fyz; although not always true, this will always be true in this course
o (of\ O ;.
r,y)=—|=—1]=— (62" +4zxe™) =0+ -0+ 4z - 2™ =
(i) 4z2e™ (i) 12z + (4 + 4y)xze® (i) 12y + 4y?e™?

use product rule on 4xe®¥, where u = 4z, v = e®¥, so uy =0, vy = e (zyl~1) = ze®V

SO U Uz +U-vr = eV 0+ 4z - ze®Y = 4x2e®Y



