Chapter 4

Calculating the Derivative

Recall, the derivative is the slope of the tangent to a curve. We found using the definition directly to calculate a derivative is complicated. Consequently, we look at techniques that allow us to algebraically calculate the derivative quickly.

4.1 Techniques for Finding Derivatives

Various notations for the derivative of y = f(x) include

$$f'(x)$$
, $\frac{dy}{dx}$, $\frac{d}{dx}[f(x)]$, $D_x[f(x)]$.

Some rules for differentiation include:

• Constant rule. Derivative of a constant function, f(x) = k, k real, is zero:

$$f'(x) = 0.$$

• Power rule. Derivative of $f(x) = x^n$, n real, is

$$f'(x) = nx^{n-1}.$$

• Constant times function rule. Derivative of $f(x) = k \cdot g(x)$, k real, g'(x) exists:

$$f'(x) = kg'(x).$$

• Sum or difference rule. Derivative of $f(x) = u(x) \pm v(x)$, and u'(x), v'(x) exist:

$$f'(x) = u'(x) \pm v'(x).$$

Exercise 4.1 (Techniques for Finding Derivatives)

1. Constant rule.

- (a) If f(x) = 3 (equivalently, y = 3), then derivative:
 - i. f'(x) = (i) 0 (ii) 1 (iii) 3

 - ii. $\frac{dy}{dx} = (i) \mathbf{0}$ (ii) $\mathbf{1}$ (iii) $\mathbf{3}$ iii. $\frac{d}{dx}[f(x)] = (i) \mathbf{0}$ (ii) $\mathbf{1}$ (iii) $\mathbf{3}$
 - iv. $D_x[f(x)] = (i) 0 (ii) 1 (iii) 3$
- (b) If f(x) = 3 and x = 3, derivative f'(3) = (i) 0 (ii) 1 (iii) 3 Function f(x) = 3 for all x, including when x = 3
- (c) If y = 3 and $x = \pi$, derivative $f'(\pi) = (i)$ 0 (ii) 1 (iii) 3 Function f(x) = 3 for all x, including when $x = \pi$.
- (d) If $f(x) = 3^2$, derivative $f'(x) = (i) \mathbf{0}$ (ii) 1 (iii) 3
- (e) If $y = \pi$, derivative $\frac{dy}{dx} =$ (i) **0** (ii) **1** (iii) **3**
- (f) If $f(x) = \pi^2$, derivative $\frac{d}{dx}[f(x)] = (i)$ 0 (ii) 1
- (g) If $f(x) = \pi^2$, derivative $D_x[f(x)] = (i)$ **0** (ii) **1** (iii) **3**
- (h) If f(x) = 3 and x = 3, derivative $\frac{dy}{dx} = (i)$ 0 (ii) 1 (iii) 3
- (i) Function f(x) = 3 is a (i) **horizontal** (ii) **vertical** line and so the slope (derivative) f'(x) must be (i) 0 (ii) 1 (iii) undefined
- (j) (i) **True** (ii) **False** If f(x) = k, k real, by definition f'(x) is

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{k - k}{h} = \lim_{h \to 0} \frac{0}{h} = \lim_{h \to 0} 0 = 0$$

2. Power Rule.

- (a) If $f(x) = x^2$ (equivalently, $y = x^2$), then derivative:
 - i. $f'(x) = 2x^{2-1} = (i)$ 2 (ii) 2x (iii) $2x^3$

 - ii. $\frac{dy}{dx} = (i) \ \boldsymbol{x} \quad (ii) \ \boldsymbol{2x} \quad (iii) \ \boldsymbol{2x^3}$ iii. $\frac{d}{dx} [f(x)] = (i) \ \boldsymbol{x} \quad (ii) \ \boldsymbol{2x} \quad (iii) \ \boldsymbol{2x^3}$
 - iv. $D_x[f(x)] = (i) \boldsymbol{x}$ (ii) $2\boldsymbol{x}$ (iii) $2\boldsymbol{x}^3$
- (b) If $f(x) = x^3$ then f'(x) = (i) 3 (ii) 3x (iii) $3x^2$
- (c) If $y = x^4$, $\frac{dy}{dx} = (i) \, 4x^3$ (ii) $4x^2$ (iii) 4x
- (d) If $f(t) = t^4$ then $\frac{d}{dt}[f(t)] = (i) \mathbf{4}x^3$ (ii) $\mathbf{4}t^3$ (iii) $\mathbf{3}t^4$
- (e) If $f(x) = x = x^1$ then $D_x[f(x)] = (i) \ \mathbf{0}$ (ii) $\mathbf{1}x^{\mathbf{0}} = \mathbf{1}$ (iii) \mathbf{x}
- (f) If $f(x) = x^{-3}$ then $f'(x) = (i) -3x^{-4}$ (ii) $3x^{-4}$ (iii) $-3x^{-2}$

(g) If
$$y = x^{-7}$$
 then $\frac{dy}{dx} = (i) -7x^{-8}$ (ii) $-8x^{-8}$ (iii) $-7x^{-6}$

(h) If
$$y = z^{-7}$$
 then $\frac{dy}{dz} = (i) - \frac{7}{z^8}$ (ii) $-\frac{7}{x^8}$ (iii) $-\frac{7}{z^6}$

(i) If
$$f(x) = x^{-7.2}$$
, $\frac{d}{dx}[f(t)] = (i) -7.2x^{-8.2}$ (ii) $-8.2x^{-6.2}$ (iii) $-6.2x^{-8.2}$

(j) If
$$f(x) = \sqrt{x} = x^{\frac{1}{2}}$$
 then $D_x[f(x)] = (i) \frac{3}{2}x^{-\frac{1}{2}}$ (ii) $-\frac{1}{2}x^{-\frac{1}{2}}$ (iii) $\frac{1}{2}x^{-\frac{1}{2}}$

(k) If
$$f(x) = \sqrt{x}$$
 then $D_x[f(x)] = (i) \frac{3}{2\sqrt{x}}$ (ii) $-\frac{1}{2\sqrt{x}}$ (iii) $\frac{1}{2\sqrt{x}}$

(l) If
$$f(x) = x^{\frac{5}{3}}$$
 then $f'(x) = (i) - \frac{5}{3}x^{-\frac{2}{3}}$ (ii) $-\frac{1}{3}x^{-\frac{1}{3}}$ (iii) $\frac{5}{3}x^{\frac{2}{3}}$

(m) If
$$f(x) = x^2$$
 (or $y = x^2$), so $f'(x) = 2x^{2-1} = 2x$, then at $x = 7$,

i.
$$f'(7) = 2(7) = (i)$$
 14 (ii) **2** \boldsymbol{x} (iii) **7**

ii.
$$\frac{dy}{dx}|_{x=7}=$$
 (i) **14** (ii) **2 $oldsymbol{x}$** (iii) **7**

ii.
$$\frac{dy}{dx}|_{x=7} = (i) \ \mathbf{14} \quad (ii) \ \mathbf{2x} \quad (iii) \ \mathbf{7}$$

iii. $\frac{d}{dx}[f(7)] = (i) \ \mathbf{14} \quad (ii) \ \mathbf{2x} \quad (iii) \ \mathbf{7}$

iv.
$$D_x[f(7)] = (i) 14 (ii) 2x (iii) 7$$

(n) If
$$f(x) = x^{-3}$$
 then $f'(x) = -3x^{-4}$ and so $f'(3) = -3(3)^{-4} \approx (i) -3x^{-4}$ (ii) -0.037 (iii) -0.333 and $f'(4) = -3(4)^{-4} \approx (i) -0.012$ (ii) -0.037 (iii) -0.333 and $f'(-4) = -3(-4)^{-4} \approx (i) -0.012$ (ii) -0.037 (iii) -0.333

3. Constant times a function rule.

(a) If
$$f(x) = 10x^5$$
 (equivalently, $y = 10x^5$), then derivative:

i.
$$f'(x) = 10(5x^{5-1}) = (i) 5x^4$$
 (ii) $10x^4$ (iii) $50x^4$

ii.
$$\frac{dy}{dx} = (i) 5x^4$$
 (ii) $10x^4$ (iii) $50x^4$

ii.
$$\frac{dy}{dx} = (i) \ 5x^4 \ (ii) \ 10x^4 \ (iii) \ 50x^4$$

iii. $\frac{d}{dx}[f(x)] = (i) \ 5x^4 \ (ii) \ 10x^4 \ (iii) \ 50x^4$

iv.
$$D_x[f(x)] = (i) 5x^4$$
 (ii) $10x^4$ (iii) $50x^4$

(b) If
$$f(x) = -\frac{2}{3}x^3$$
 then $f'(x) = -\frac{2}{3}(3x^{3-1}) = (i) -2x^2$ (ii) $3x^2$ (iii) $-3x^3$

(c) If
$$y = 8p^4$$
 then $\frac{dy}{dp} = 8(4p^{4-1}) = (i) \ \mathbf{32x^3}$ (ii) $\mathbf{8p^3}$ (iii) $\mathbf{32p^3}$

(d) If
$$f(x) = 5x^{\frac{5}{7}}$$
 then $\frac{d}{dx}[f(x)] = (i) \frac{5}{7}x^{-\frac{2}{7}}$ (ii) $\frac{25}{7}x^{-\frac{2}{7}}$ (iii) $5x^{-\frac{2}{7}}$

(e) If
$$f(x) = \frac{7}{x} = 7x^{-1}$$
 then $D_x[f(x)] = (i) \ 7x^{-1}$ (ii) $-7x^{-2}$ (iii) $-2x^{-7}$ and so $D_x[f(2)] = -7(2)^{-2} = (i) \ -2.25$ (ii) -1.75 (iii) -2.75 and $D_x[f(8)] = -7(8)^{-2} \approx (i) \ -0.23$ (ii) -0.45 (iii) -0.11

(f) (i) **True** (ii) **False** If $f(x) = k \cdot q(x)$, k real, by definition f'(x) is

$$f'(x) = \lim_{h \to 0} \frac{kg(x+h) - kg(x)}{h}$$

$$= \lim_{h \to 0} k \frac{g(x+h) - g(x)}{h}$$

$$= k \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= k \cdot g'(x)$$

4. Sum or difference rule.

(a) If
$$f(x) = 2x^3 - 4x$$
 then $f'(x) = 2(3x^{3-1}) - 4(1x^{1-1}) =$
(i) $3x^2 - 4$ (ii) $6x^2 - 4$ (iii) $6x^2 - 4x$

(b) If
$$y = 8p^4 + 4\sqrt{p} - 5 = 8p^4 + 4p^{\frac{1}{2}} - 5$$
 then $\frac{dy}{dp} = 8(4p^{4-1}) + 4\left(\frac{1}{2}p^{\frac{1}{2}-1}\right) + 0 =$
(i) $32p^3 + \frac{1}{p}$ (ii) $32p^3 + \frac{1}{\sqrt{p}} + 5$ (iii) $32p^3 + \frac{2}{\sqrt{p}}$

(c) If
$$f(x) = 5x^{\frac{5}{7}} + \frac{7}{x} = 5x^{\frac{5}{7}} + 7x^{-1}$$
 then $\frac{d}{dx}[f(x)] =$
(i) $\frac{25}{7}x^{-\frac{2}{7}} - 7x^{-2}$ (ii) $5x^{-\frac{2}{7}} - 7x^{-2}$ (iii) $\frac{5}{7}x^{-\frac{2}{7}} + 7x^{-2}$

(d) If
$$f(x) = \frac{7+4\sqrt{x}}{x} = \frac{7}{x} + \frac{4x^{\frac{1}{2}}}{x} = 7x^{-1} + 4x^{\frac{1}{2}}$$

then $D_x[f(x)] = 7(-x^{-1-1}) + 4(\frac{1}{2}x^{\frac{1}{2}-1}) =$
(i) $\frac{7}{x^2} + \frac{2}{\sqrt{x}}$ (ii) $-\frac{7}{x^2} + \frac{2}{\sqrt{x}}$ (iii) $-\frac{7}{x^2} - \frac{2}{\sqrt{x}}$

(e) If
$$f(x) = (2x^3 - 4x)^2 = 4x^6 - 16x^4 + 16x^2$$

then $f'(x) = 4(6x^{6-1}) - 16(4x^{4-1}) + 16(2x^{2-1}) =$
(i) $24x^5 - 64x^3 + 32x$ (ii) $24x^5 + 64x^3 + 32$ (iii) $24x^5 - 64x^3 - 32$
and so $f'(2) = 24(2)^5 - 64(2)^3 + 32(2) =$ (i) 321 (ii) 322 (iii) 320
and $f'(0) = 24(0)^5 - 64(0)^3 + 32(0) =$ (i) 0 (ii) -8 (iii) undefined

(f) (i) **True** (ii) **False** If
$$f(x) = u(x) + v(x)$$
, then

$$f'(x) = \lim_{h \to 0} \frac{[u(x+h) + v(x+h)] - [u(x) + v(x)]}{h}$$

$$= \lim_{h \to 0} \frac{[u(x+h) - u(x)] + [v(x+h) - v(x)]}{h}$$

$$= \lim_{h \to 0} \left[\frac{u(x+h) - u(x)}{h} + \frac{v(x+h) - v(x)}{h} \right]$$

$$= \lim_{h \to 0} \frac{u(x+h) - u(x)}{h} + \lim_{h \to 0} \frac{v(x+h) - v(x)}{h}$$

$$= u'(x) + v'(x)$$

- 5. Tangent lines.
 - (a) Locating point(s) of $f(x) = 2x^2 + 5x$ where tangent line(s) horizontal. since $f'(x) = 2(2x^{2-1}) + 5(x^{1-1}) = (i) 2x + 5$ (ii) 4x + 5 (iii) 4x 5 and horizontal tangent line occurs when f'(x) = 0, then

$$f'(x) = 4x + 5 = 0$$

when
$$x_1 = (i)$$
 -1.25 (ii) **1.25** (iii) **0** and since $f(x_1) = f(-1.25) = 2(-1.25)^2 + 5(-1.25) =$ (i) **-3.125** (ii) **-3.225** (iii) **3.325** so point on $f(x)$ when tangent line is horizontal is $(x_1, f(x_1)) =$

(i) (-1.25, 3.125) (ii) (1.25, -3.125) (iii) (-1.25, -3.125) and also equation of tangent line at (-1.25, -3.125) is

$$y - f(x_1) = f'(x_1)(x - x_1)$$

$$y - f(-1.25) = f'(-1.25)(x - (-1.25))$$

$$y - (-3.125) = 0(x + 1.25)$$

or (i)
$$y = -3.125$$
 (ii) $y = 3.125$ (iii) $y = 0$

(b) Locating all x where tangent lines to $f(x) = x^3 + x^2$ are horizontal. since $f'(x) = 3x^{3-1} + x^{2-1} = (i) 3x^2 + x$ (ii) 3x + x (iii) $2x^3 + x$ and horizontal tangent lines occur when f'(x) = 0, then

$$f'(x) = 3x^2 + x = x(3x+1) = 0$$

when $x_1 = \text{(choose } two!)$ (i) $-\frac{1}{3}$ (ii) $\frac{1}{3}$ (iii) 0

(c) Points where slopes to tangent lines to $f(x) = \frac{1}{3}x^3 + \frac{5}{2}x^2 + 3x$ equal -3. since $f'(x) = \frac{1}{3}(3x^{3-1}) + \frac{5}{2}(2x^{2-1}) + 3(x^{1-1}) =$ (i) $x^2 - 5x + 3$ (ii) $x^2 + 5x + 3$ (iii) $x^2 + 5x - 3$ and tangent lines with slope -3 occur when f'(x) = -3,

$$f'(x) = x^2 + 5x + 3 = -3$$

so $x^2 + 5x + 6 = 0$ or (x + 3)(x + 2) = 0when $x_1 = (\text{choose } two!)$ (i) -2 (ii) -3 (iii) 0and since $f(x_1) = f(-2) = \frac{1}{3}(-2)^3 + \frac{5}{2}(-2)^2 + 3(-2) =$ (i) $\frac{2}{3}$ (ii) $\frac{4}{3}$ (iii) $\frac{4}{3}$ and also $f(x_1) = f(-3) = \frac{1}{3}(-3)^3 + \frac{5}{2}(-3)^2 + 3(-3) =$ (i) 4.5 (ii) 4.4 (iii) 4.3so two points on f(x) when slope of tangent line -3 is $(x_1, f(x_1)) =$ (i) $(-2, \frac{4}{3})$ (ii) (-3, 4.5) (iii) (-2, -3)

6. Application: life sciences. Circumference, C (in cm), of a healing wound is

$$C(r) = 2\pi r$$

- (a) Circumference of a wound with radius r=3 cm, is C(3)=(i) 3π (ii) 6π (iii) 8π
- (b) Rate of change of circumference with respect to radius is $C'(r) = (i) 2\pi$ (ii) 3π (iii) 4π
- (c) At r = 5 cm, $C'(5) = (i) 2\pi$ (ii) 3π (iii) 4π
- 7. Application: social sciences. Population of a city is given by

$$P(t) = 50,000 + 1500t^{1.5}$$

- (a) Rate of change of population with respect to time is $P'(t) = (i) \ \mathbf{1500t} \ \ (ii) \ \mathbf{2250t^{0.5}} \ \ (iii) \ \mathbf{t^{0.5}}$
- (b) At t = 2, growth rate is P'(2) = (i) 3182 (ii) 4574 (iii) 4834
- 8. Application: physics. Function which relates distance, s, to time, t:

$$s(t) = 3t^3 + 2t$$

- (a) At t = 0, distance s(0) = (i) **0** (ii) **1** (iii) **2** and at t = 2, s(2) = (i) **3** (ii) **14** (iii) **28**
- (b) Velocity (rate of change of distance with respect to time) is $v(t) = s'(t) = (i) \mathbf{3}t^2 + \mathbf{2}$ (ii) $\mathbf{9}t^2 + \mathbf{2}$ (iii) $\mathbf{9}t^2$ and at t = 2, $v(2) = 9(2)^2 + 2 = (i) \mathbf{3}$ (ii) $\mathbf{14}$ (iii) $\mathbf{38}$
- (c) Acceleration (rate of change of *velocity* with respect to time) is $a(t) = v'(t) = (i) \ \mathbf{18t} \ (ii) \ \mathbf{9t^2 + 2} \ (iii) \ \mathbf{9t^2}$ and at t = 2, $a(2) = 18(2) = (i) \ \mathbf{3} \ (ii) \ \mathbf{14} \ (iii) \ \mathbf{36}$
- 9. Application: business. Revenue, R(x), and cost, C(x), functions are

$$R(x) = 3x,$$

 $C(x) = 0.01x^2 + 2.4x + 45,$

where x is quantity of items produced.

- (a) Marginal revenue R'(x) =(i) $3x - (0.01x^2 + 2.4x)$ (ii) $3x - (0.01x^2 + 45)$ (iii) 3 so marginal revenue of 50 items R'(50) = (i) 3 (ii) 15 (iii) 20
- (b) Marginal cost C'(x) =(i) $3x - (0.01x^2 + 2.4x)$ (ii) $3x - (0.01x^2 + 45)$ (iii) 0.02x + 2.4so marginal cost of 50 items C'(50) = (i) 1.40 (ii) 2.40 (iii) 3.40
- (c) Profit P(x) = R(x) C(x) =(i) $3x - (0.01x^2 + 2.4x)$ (ii) $3x - (0.01x^2 + 45)$ (iii) $-0.01x^2 + 0.6x - 45$
 - so marginal profit P'(x) =
 - (i) $3x (0.01x^2 + 2.4x)$ (ii) $3x (0.01x^2 + 45)$ (iii) -0.02x + 0.6 marginal profit of 50 items P'(50) = (i) -0.40 (ii) -0.60 (iii) -0.80
- (d) Quantity x when marginal profit zero, P'(x) = 0, so

$$P'(x) = -0.02x + 0.6 = 0$$

when $x = \frac{-0.6}{-0.02} = (i)$ **30** (ii) **40** (iii) **50** where profit is $P(30) = -0.01(30)^2 + 0.6(30) - 45 = (i)$ **-30** (ii) **-36** (iii) **-42**

4.2 Derivatives of Products and Quotients

Product rule: If $f(x) = u(x) \cdot v(x)$, u'(x) and v'(x) exist, then

$$f'(x) = v(x) \cdot u'(x) + u(x) \cdot v'(x).$$

Quotient rule: If $y = \frac{u(x)}{v(x)}$, u'(x) and v'(x) exist, and $v(x) \neq 0$, then

$$f'(x) = \frac{v(x) \cdot u'(x) - u(x) \cdot v'(x)}{[v(x)]^2}.$$

Exercise 4.2 (Derivatives of Products and Quotients)

- 1. Product Rule
 - (a) Consider f(x) = (4x 1)(5x + 4). let u(x) = 4x - 1 and v(x) = 5x + 4.

Then,
$$u'(x) =$$

- (i) $4x^2$
- (ii) **4**
- (iii) **-1**

and
$$v'(x) =$$

- (i) $5x^2$
- (ii) **5**
- (iii) 3 + 4x

and so
$$v(x)u'(x) =$$

(i)
$$(5x+4)(4)$$

(ii)
$$(5x+4)(4x^2)$$

(iii)
$$(5x^2+4)(4)$$

and
$$u(x)v'(x) =$$

(i)
$$(4x^2-1)(5)$$

(ii)
$$(4x-1)(5)$$

(iii)
$$(4x-1)(5x)$$

and so
$$f'(x) = v(x) \cdot u'(x) + u(x) \cdot v'(x) =$$

(i)
$$(5x+4)(4) + (4x-1)(5)$$

(ii)
$$(5x-4)(4) + (4x-1)(5)$$

(iii)
$$(5x+4)(4) - (4x-1)(5)$$

which equals

(i)
$$40x - 11$$

(ii)
$$40x + 11$$

(iii)
$$39 + 11$$

(b) Consider
$$f(x) = (\sqrt{x} + x)(x^3 + x^2)$$
.
let $u(x) = \sqrt{x} + x = x^{1/2} + x$ and $v(x) = x^3 + x^2$.

Then,
$$u'(x) =$$

(i)
$$3x^2 - 7$$

(ii)
$$3x^2 + 3$$

(iii)
$$\frac{1}{2}x^{-1/2} + 1$$

and
$$v'(x) =$$

(i)
$$3x^2 - 7$$

(ii)
$$3x^2 + 3$$

(iii)
$$3x^2 + 2x$$

and so
$$v(x)u'(x) =$$

$$egin{array}{ll} ({
m i}) \ (2x^3+2x^2-4x)(3x^2+3) \ ({
m ii}) \ (x^3+x^2)(rac{1}{2}x^{-1/2}+1) \ ({
m iii}) \ 6x^2+4x-4 \end{array}$$

(ii)
$$(x^3 + x^2)(\frac{1}{2}x^{-1/2} + 1)$$

(iii)
$$6x^2 + 4x - 4$$

and
$$u(x)v'(x) =$$

(i)
$$(2x^3 + 2x^2 - 4x)(3x^2 + 3)$$

(ii)
$$3x^2 + 3$$

(iii)
$$(x^{1/2}+x)(3x^2+2x)$$

and so
$$\frac{dy}{dx} = v(x) \cdot u'(x) + u(x) \cdot v'(x) =$$

(i)
$$(2x^3 + 2x^2 - 4x)(3x^2 + 3)$$

(ii)
$$(x^3 + x^2)(\frac{1}{2}x^{-1/2} + 1) + (x^{1/2} + x)(3x^2 + 2x)$$

and so
$$\frac{dy}{dx} = v(x) \cdot u'(x) + u(x) \cdot v'(x) =$$
(i) $(2x^3 + 2x^2 - 4x)(3x^2 + 3)$
(ii) $(x^3 + x^2)(\frac{1}{2}x^{-1/2} + 1) + (x^{1/2} + x)(3x^2 + 2x)$
(iii) $(2x^3 + 2x^2 - 4x)(3x^2 + 3) + (x^3 + 3x)(6x^2 + 4x - 4)$

$$\frac{1}{2}x^{\frac{5}{2}} + \frac{1}{2}x^{\frac{3}{2}} + x^3 + x^2 + 3x^{\frac{5}{2}} + 3x^3 + 2x^{\frac{3}{2}} + 2x^2$$

(i)
$$4x^3 + \frac{5}{2}x^{\frac{5}{2}} + 3x^2 + \frac{5}{2}x^{\frac{3}{2}}$$

(i)
$$4x^3 + \frac{5}{2}x^{\frac{5}{2}} + 3x^2 + \frac{5}{2}x^{\frac{3}{2}}$$

(ii) $4x^3 + \frac{7}{2}x^{\frac{5}{2}} + 3x^2 + \frac{5}{2}x^{\frac{3}{2}}$

(iii)
$$4x^3 + \frac{7}{2}x^{\frac{3}{2}} + 3x^2 + \frac{5}{2}x^{\frac{1}{2}}$$

(c) Consider
$$f(x) = (x^3 + 3x)(2x^3 + 2x^2 - 4x)$$
.

let
$$u(x) = x^3 + 3x$$
 and $v(x) = 2x^3 + 2x^2 - 4x$.

Then,
$$u'(x) =$$

(i)
$$3x^2 - 7$$

(ii)
$$3x^2 + 3$$

(iii)
$$4x - \frac{7}{3}$$

and
$$v'(x) =$$

(i)
$$3x^2 - 7$$

(ii)
$$3x^2 + 3$$

(iii)
$$6x^2 + 4x - 4$$

so
$$v(x)u'(x) =$$

(i)
$$(2x^3 + 2x^2 - 4x)(3x^2 + 3)$$

(ii)
$$3x^2 + 3$$

(iii)
$$6x^2 + 4x - 4$$

and
$$u(x)v'(x) =$$

(i)
$$(2x^3 + 2x^2 - 4x)(3x^2 + 3)$$

(ii)
$$3x^2 + 3$$

(iii)
$$(x^3+3x)(6x^2+4x-4)$$

and so
$$f'(x) = v(x) \cdot u'(x) + u(x) \cdot v'(x) =$$

(i)
$$(2x^3 + 2x^2 - 4x)(3x^2 + 3)$$

(ii)
$$3x^2 + 3$$

$$()()(2x^3 + 2x^2 - 4x)(3x^2 + 3) + (x^3 + 3x)(6x^2 + 4x - 4)$$

or

$$6x^5 + 6x^4 - 12x^3 + 6x^3 + 6x^2 - 12x + 6x^5 + 18x^3 + 4x^4 + 12x^2 - 4x^3 - 12x$$

(i)
$$12x^5 + 10x^4 + 8x^3 + 18x^2 - 24x$$

(ii)
$$6x^5 + 12x^4 - 16x^3 + 14x^2 - 24x$$

(iii)
$$6x^5 + 12x^4 + 8x^3 + 14x^2 - 24x$$

(d) Consider
$$y = \left(\frac{2}{x^2} + 3\right) \left(\frac{1}{x^3} + 2x - 4\right)$$
.
Let $u(x) = \frac{2}{x^2} + 3 = 2x^{-2} + 3$ and $v(x) = \frac{1}{x^3} + 2x - 4 = x^{-3} + 2x - 4$.

Then
$$u'(x) =$$

(i)
$$-4x^{-3}$$

(ii)
$$3x^2 + 3$$

(iii)
$$6x^2 + 4x - 4$$

and
$$v'(x) =$$
(i) $3x^2 + 3$
(ii) $6x^2 + 4x - 4$
(iii) $-3x^{-4} + 2$
and so $v(x)u'(x) =$
(i) $3x^2 + 3$

$$\stackrel{\text{(ii)}}{\text{(ii)}} (x^{-3} + 2x - 4) (-4x^{-3}) \\ \text{(iii)} 6x^2 + 4x - 4$$

and
$$u(x)v'(x) =$$

(i) $3x^2 + 3$
(ii) $(2x^{-2} + 3)(-3x^{-4} + 2)$
(iii) $6x^2 + 4x - 4$

and so
$$\frac{d}{dx}[f(x)] = v(x) \cdot u'(x) + u(x) \cdot v'(x) =$$
(i) $(x^{-3} + 2x - 4)(-4x^{-3}) + (2x^{-2} + 3)(-3x^{-4} + 2)$
(ii) $(x^{-2} + 2x - 4)(-4x^{-3}) + (2x^{-2} + 3)(-3x^{-4} + 2)$
(iii) $(x^{-3} + 2x - 4)(-4x^{-3}) + (2x^{-2} + 3)(-3x^{-4} - 2)$
or

 $-4x^{-6} - 8x^{-2} + 16x^{-3} - 6x^{-6} - 9x^{-4} + 4x^{-2} + 6$

which equals

$$\begin{array}{l} \text{(i) } 4x^{-2} + 16x^{-3} - 9x^{-4} - 10x^{-6} + 6 \\ \text{(ii) } -4x^{-2} - 16x^{-3} - 9x^{-4} - 10x^{-6} + 6 \\ \text{(iii) } -4x^{-2} + 16x^{-3} - 9x^{-4} - 10x^{-6} + 6 \end{array}$$

(e) Using product rule definition. If u(4) = 5, u'(4) = 6, v(4) = 9 and v'(4) = -4, then $D_x[f(4)] = v(4) \cdot u'(4) + u(4) \cdot v'(4) = (i)$ 34 (ii) 35 (iii) 36

2. Quotient rule

(a) Consider
$$f(x) = \frac{4x-1}{5x+4}$$
.
let $u(x) = 4x - 1$ and $v(x) = 5x + 4$.

Then,
$$u'(x) = (i) \mathbf{4}x^2$$

(ii) $\mathbf{4}$
(iii) $-\mathbf{1}$

and
$$v'(x) = (i) 5x^2$$

(iii)
$$3 + 4x$$

and so
$$v(x)u'(x) =$$

(i)
$$(5x+4)(4)$$

(ii)
$$(5x+4)(4x^2)$$

(iii)
$$(5x^2+4)(4)$$

and
$$u(x)v'(x) =$$

(i)
$$(4x^2-1)(5)$$

(ii)
$$(4x-1)(5)$$

(iii)
$$(4x-1)(5x)$$

and so
$$f'(x) = \frac{v(x) \cdot u'(x) - u(x) \cdot v'(x)}{[v(x)]^2} =$$

and so
$$f'(x) = \frac{v(x) \cdot u'(x) - u(x) \cdot v'(x)}{[v(x)]^2} =$$
(i) $\frac{(5x+4)(4) - (4x-1)(5)}{(5x+4)^2}$ (ii) $\frac{(5x+4)(4) + (4x-1)(5)}{(5x+4)^2}$ (iii) $\frac{(5x+4)(4) + (4x-1)(5)}{(4x-1)^2}$

(i)
$$\frac{21}{(5x+4)^2}$$
 (ii) $\frac{40x+11}{(5x+4)^2}$ (iii) $\frac{20}{(5x+4)^2}$

(b) Consider
$$y = \frac{x^{1/2} + x}{x^3 + x^2}$$
.
let $u(x) = x^{1/2} + x$ and $v(x) = x^3 + x^2$.

let
$$u(x) = x^{1/2} + x$$
 and $v(x) = x^3 + x^2$.

Then,
$$u'(x) =$$

(i)
$$3x^2 - 7$$

(ii)
$$3x^2 + 3$$

(iii)
$$\frac{1}{2}x^{-1/2} + 1$$

and
$$v'(x) =$$

(i)
$$3x^2 - 7$$

(ii)
$$3x^2 + 3$$

$$(iii)$$
 $3x^2+2x$

and so
$$v(x)u'(x) =$$

(i)
$$(2x^3+2x^2-4x)(3x^2+3)$$

$$\begin{array}{l} \text{(i) } (2x^3+2x^2-4x)(3x^2+3) \\ \text{(ii) } (x^3+x^2)(\frac{1}{2}x^{-1/2}+1) \\ \text{(iii) } 6x^2+4x-4 \end{array}$$

(iii)
$$6x^2 + 4x - 4$$

and
$$u(x)v'(x) =$$

(i)
$$(2x^3 + 2x^2 - 4x)(3x^2 + 3)$$

(ii)
$$3x^2 + 3$$

(iii)
$$(x^{1/2}+x)(3x^2+2x)$$

and so
$$\frac{dy}{dx} = \frac{v(x) \cdot u'(x) - u(x) \cdot v'(x)}{[v(x)]^2} =$$
(i) $\frac{(x^3 + x^2)(\frac{1}{2}x^{-1/2} + 1) + (x^{1/2} + x)(3x^2 + 2x)}{(x^3 + x^2)^2}$
(ii) $\frac{(x^3 + x^2)(\frac{1}{2}x^{-1/2} + 1) - (x^{1/2} + x)(3x^2 + 2x)}{(x^3 + x^2)^2}$
(iii) $\frac{(3x + 2x)(\frac{1}{2}x^{-1/2} + 1) - (x^{1/2} + x)(3x^2 + 2x)}{(x^3 + x^2)^2}$
or
$$\frac{1}{2}x^{\frac{5}{2}} + \frac{1}{2}x^{\frac{3}{2}} + x^3 + x^2 - 3x^{\frac{5}{2}} - 3x^3 - 2x^{\frac{3}{2}} - 2x^2}{(x^3 + x^2)^2}$$

(i)
$$\frac{-2x^3 - \frac{5}{2}x^{\frac{5}{2}} - x^2 - \frac{3}{2}x^{\frac{3}{2}}}{(x^3 + x^2)^2}$$

(ii)
$$\frac{4x^3 + \frac{5}{2}x^{\frac{5}{2}} + 3x^2 + \frac{5}{2}x^{\frac{3}{2}}}{(x^3 + x^2)^2}$$

which equals
$$(i) \frac{-2x^3 - \frac{5}{2}x^{\frac{5}{2}} - x^2 - \frac{3}{2}x^{\frac{3}{2}}}{(x^3 + x^2)^2}$$

$$(ii) \frac{4x^3 + \frac{5}{2}x^{\frac{5}{2}} + 3x^2 + \frac{5}{2}x^{\frac{3}{2}}}{(x^3 + x^2)^2}$$

$$(iii) \frac{-4x^3 - \frac{5}{2}x^{\frac{5}{2}} - 3x^2 - \frac{5}{2}x^{\frac{3}{2}}}{(x^3 + x^2)^2}$$

(c) Consider
$$f(t) = \frac{t}{t^2+3}$$
.
let $u(t) = t$ and $v(t) = t^2 + 3$.

Then,
$$u'(t) =$$

- (i) **1**
- (ii) *t*
- (iii) t^2

and
$$v'(t) =$$

- (i) **2***t*
- (ii) $2t^2$
- (iii) **4***t*

and so
$$v(t)u'(t) =$$

(i)
$$(t^2+3)(t)$$

(ii)
$$(t+3)(1)$$

(iii)
$$(t^2+3)(1)$$

and
$$u(t)v'(t) =$$

(i)
$$(t^2)(t)$$

$$(ii)(t^2+1)(1)$$

$$(iii)$$
 $(t)(2t)$

and so
$$f'(t) = \frac{v(t) \cdot u'(t) - u(t) \cdot v'(t)}{[v(t)]^2} =$$
(i) $\frac{(t^2+3)(1) - (t)(2t)}{(t^2+3)^2}$ (ii) $\frac{(t^2+3)(1) + (t)(2t)}{(t^2+3)^2}$ (iii) $\frac{(3t^2+3)(1) - (t)(2t)}{(t^2+3)^2}$

which equals (i)
$$\frac{-t^2}{(t^2+3)^2}$$
 (ii) $\frac{-t^2+3}{(t^2-3)^2}$ (iii) $\frac{-t^2+3}{(t^2+3)^2}$

(d) Equation of tangent line to $y = f(t) = \frac{t}{t^2 + 3}$ at point $(t_1, f(t_1)) = (1, \frac{1}{4})$. Since $f'(t_1) = f'(1) = \frac{-(1)^2 + 3}{((1)^2 + 3)^2} = (i) \frac{1}{8}$ (ii) $\frac{1}{16}$ (iii) $\frac{1}{32}$ then

$$y - f(t_1) = f'(t_1)(t - t_1)$$

$$y - f(1) = f'(1)(t - 1)$$

$$y - \frac{1}{4} = \frac{1}{8}(t - 1)$$

or (i)
$$y = \frac{t+1}{8}$$
 (ii) $y = \frac{t-1}{8}$ (iii) $y = \frac{t+1}{4}$

3. Application: average cost. Monthly fixed costs of using machine I are \$15,000 and marginal costs of manufacturing one widget using machine I is \$20. Suppose number of widgets produced restricted to $100 \le x \le 500$. Consequently, average costs are

$$\overline{C}(x) = \frac{20x + 15000}{x}, \ 100 \le x \le 500.$$

let u(x) = 20x + 15000 and v(x) = x.

Then, u'(x) =

- (i) **15000**
- (ii) $\mathbf{20}x^2$
- ${\rm (iii)} \ {\bf 20}$

and v'(x) =

- (i) \boldsymbol{x}
- (ii) **1**
- (iii) $oldsymbol{x^2}$

and so v(x)u'(x) =

- (i) (x)(20)
- (ii) $(x^2)(20)$
- (iii) (x)(20x)

and u(x)v'(x) =

- (i) (20x)(1)
- (ii) (20x + 15000)(1)
- (iii) (15000)(1)

and so
$$\overline{C}'(x) = \frac{v(x) \cdot u'(x) - u(x) \cdot v'(x)}{[v(x)]^2} =$$
(i) $\frac{(x)(20) + (20x + 15000)(1)}{(x)^2}$ (ii) $\frac{(x)(20) - (20x + 15000)(1)}{(x)^2}$ (iii) $\frac{(x)(20) - (20x)(1)}{(x)^2}$

which equals (i)
$$\frac{15000}{x^2}$$
 (ii) $-\frac{15000}{x^2}$ (iii) $-\frac{15000}{x}$