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9.3 Maxima and Minima

We look at relative minima and maxima points on two–dimensional surfaces. For all
points in a circular region containing (a, b), there is a

• relative minimum at (a, b) if f(a, b) ≤ f(x, y)

• relative maximum at (a, b) if f(a, b) ≥ f(x, y)

More than this, for function z = f(x, y), a relative minimum or relative maximum
are located at critical point (a, b) where, as shown in figure,

fx(a, b) = 0, fy(a, b) = 0.

If, for example, maximum in x-axis direction, but minimum in y-axis direction (or
vis-versa) as shown in right figure, then critical point (a, b) is a saddlepoint, neither
a maximum nor a minimum.

f(x,y)

yx

slope in y direction,

at point (x,y) = (0,0)

is f   = 0 (minimum)y

slope in x direction,

at point (x,y) = (0,0)

is f   = 0 (minimum)   

y

x

x

y

f(x,y)

critical point,

minimum

critical point,

saddlepoint

slope in y direction,

at point (x,y) = (0,0)

is f   = 0 (maximum)y

slope in x direction,

at point (x,y) = (0,0)

is f   = 0  (minimum) x

Figure 9.12 (critical point, extremum and saddlepoint)

Relative minima and maxima points are identified using the discriminant test:

• find fx, fy, fxx, fyy, fxy

• find (a, b) such that fx(a, b) = 0 and fy(a, b) = 0

• find discriminant D = fxx(a, b) · fyy(a, b)− [fxy(a, b)]
2

• then

– f (relative) maximum at (a, b) if D > 0 and fxx(a, b) < 0

– f (relative) minimum at (a, b) if D > 0 and fxx(a, b) > 0
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– f saddlepoint at (a, b) if D < 0

– test not applicable, gives no information, if D = 0

Notice discriminant test only considers the sign of fxx(a, b) alone, does not consider the sign of fyy(a, b)–this is because

if D > 0 then both fxx(a, b) and fyy(a, b) must either positive or both must be negative; in other words, both must be

the same sign, and so only one of the two need be checked. Boundary relative extrema are not considered. Functions

are assumed to be differentiable. Finally, absolute extrema are not considered in this course.

Exercise 9.3 (Maxima and Minima)

1. Maxima–Minima of z = 3x+ 4y?

xx y

f(x,y)

shadow cast

by overhanging plane

Figure 9.13 (Maxima–Minima of z = 3x+ 4y?)

(a) Possible extrema: locating critical points.

Recall, since
fx(x, y) = 3 · 1x1−1 + 0 =

(i) 0 (ii) 3 (iii) 4

and
fy(x, y) = 0 + 4 · 1y1−1 =

(i) 0 (ii) 3 (iii) 4

plane z = 3x + 4y (i) does have (ii) does not have any criti-
cal points and so, consequently, no minima or maxima.
there are no critical points because fx(x, y) = 3 6= 0 and fy(x, y) = 4 6= 0

(b) Identifying which critical points are extrema: discriminant test.

Since no critical points, discriminant test (i) is (ii) is not applicable here.
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(c) Related questions.

If domain of plane z = 3x + 4y was constrained in some x–y region, say
−5 ≤ x ≤ 5 and −5 ≤ y ≤ 5, minima or maxima point(s) must necessar-
ily appear (i) along the edge (ii) in the interior of this bounded plane.

2. Maxima–Minima of z = x2.

x
y

f(x,y)

zero slope in y direction,

f   = 0, for all yy

y

f(x,y)

linear in y direction,

f    = 0yy

(c)  f(x,y) = 0  when x = 0

slice of f(x,y)

in y direction

zero slope 

in x direction,

f   = 2x = 0

when x = 0
x

minimum points,

f   = 0, f   = 0yx

x

f(x,y)

(b)  f(x,y) = x    when y = 0 2

slice of f(x,y)

in x direction
concave up 

in x direction,

f     > 0xx

Figure 9.14 (Maxima–Minima of z = x2)

(a) Possible extrema: locating critical points.

Recall, since
fx(x, y) = 2x2−1 =

(i) 2 (ii) 2x (iii) 2x2

and

fy(x, y) =
∂

∂y

(

x2
)

=

(i) 0 (ii) 3 (iii) 4
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so all critical points which satisfy

fx(x, y) = 2x = 0, fy(x, y) = 0

are (a, b) = (i) (0, 0) (ii) (0, y), y ≥ 0 (iii) (0, y),−∞ < y < ∞
y can be anything, −∞ < y < ∞, because slope in y-axis direction is always zero, fy(x, y) = 0

(b) Identifying which critical points are extrema: discriminant test.

Since

fxx(x, y) =
∂

∂x

(

∂z

∂x

)

=
∂

∂x
(2x) = 2 · 1x1−1 =

(i) 2 (ii) 2x (iii) 2x2

and

fxy(x, y) =
∂

∂y

(

∂f

∂x

)

=
∂

∂y
(2x) =

(i) 0 (ii) 3 (iii) 4
fxy = 0 because 2x is a constant with respect to y

and

fyy(x, y) =
∂

∂y

(

∂z

∂y

)

=
∂

∂y
(0) =

(i) 0 (ii) 3 (iii) 4

so, summarizing,

fxx(x, y) = 2, fyy(x, y) = 0, fxy(x, y) = 0

so, at critical points (a, b) = (0, y),

fxx(0, y) =

(i) 0 (ii) 2 (iii) 8
fxx(0, 0) = 2 because fxx(x, y) = 2 for any (x, y) including (x, y) = (0, y)

and
fyy(0, y) =

(i) 0 (ii) 2 (iii) 8
fyy(0, 0) = 0 because fyy(x, y) = 0 for any (x, y) including (x, y) = (0, y)
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and
fxy(0, y) =

(i) 0 (ii) 2 (iii) 8
fxy(0, 0) = 0 because fxy(x, y) = 0 for any (x, y) including (x, y) = (0, y)

so, at critical points (a, b) = (0, y), −∞ < y < ∞,

D = fxx(a, b) · fyy(a, b)− [fxy(a, b)]
2

= fxx(0, y) · fyy(0, y)− [fxy(0, y)]
2

= 2 · 0− [0]2 =

(i) 0 (ii) 1 (iii) 2

and so, since D = 0, discriminant test here
(i) says critical points (a, b) = (0, y) are minima
(ii) says critical points (a, b) = (0, y) are maxima
(iii) says critical point (a, b) = (0, y) is a saddlepoint
(iv) unable to tell if critical point is a minimum/maximum

Although discriminant test unable to tell if minima or maxima, critical
points (a, b) = (0, y) clearly are minima because fxx(0, y) = 2 > 0 and
fyy(0, y) = 0 which means function f(x, y) = x2

(i) concave up in both the x–axis direction and y–axis direction
(ii) concave up in x–axis direction, linear in y–axis direction
(iii) concave up in y–axis direction, linear in x–axis direction
(iv) concave down in both x–axis direction and y–axis direction

3. Maxima–Minima of z = x2 + y2.
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slice of f(x,y)
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slice of f(x,y)
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concave up 

in x direction,

f     > 0xx
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concave up 

in y direction,

f     > 0yy

zero slope 

in x direction,

f   = 2x = 0

when x = 0
x

Figure 9.15 (Maxima–Minima of z = x2 + y2)

(a) Possible extrema: locating critical points.

Recall, since
fx(x, y) = 2x2−1 + 0 =

(i) 2x (ii) 2y (iii) 2x + 2y
derivative of x2 with respect to x is 2x, but derivative of y2 is zero because y2 constant with respect to x

and
fy(x, y) = 0 + 2y2−1 =

(i) 2x (ii) 2y (iii) 2x + 2y
derivative of y2 with respect to y is 2y, but derivative of x2 is zero because x2 constant with respect to y

so critical point(s) which satisfy

fx(x, y) = 2x = 0, fy(x, y) = 2y = 0

is/are (a, b) = (i) (0, 0) (ii) (0, y), y ≥ 0 (iii) (0, y),−∞ < y < ∞



122 Chapter 9. Multivariable Calculus (LECTURE NOTES 7)

(b) Identifying which critical point(s) is/are extrema: discriminant test.

Since

fxx(x, y) =
∂

∂x

(

∂f

∂x

)

=
∂

∂x
(2x) = 2 · 1x1−1 =

(i) 0 (ii) 2 (iii) 4

and

fxy(x, y) =
∂

∂y

(

∂f

∂x

)

=
∂

∂y
(2x) =

(i) 0 (ii) 2 (iii) 4
fxy = 0 because 2x is a constant with respect to y

and

fyy(x, y) =
∂

∂y

(

∂f

∂y

)

=
∂

∂y
(2y) = 2 · 1y1−1 =

(i) 0 (ii) 2 (iii) 4

so, summarizing,

fxx(x, y) = 2, fyy(x, y) = 2, fxy(x, y) = 0

so, at critical point (a, b) = (0, 0),

fxx(0, 0) =

(i) 0 (ii) 2 (iii) 8
fxx(0, 0) = 2 because fxx(x, y) = 2 for any (x, y) including (x, y) = (0, 0)

and
fyy(0, 0) =

(i) 0 (ii) 2 (iii) 8
fyy(0, 0) = 2 because fyy(x, y) = 2 for any (x, y) including (x, y) = (0, 0)

and
fxy(0, 0) =

(i) 0 (ii) 2 (iii) 8
fxy(0, 0) = 0 because fxy(x, y) = 0 for any (x, y) including (x, y) = (0, 0)
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so, at critical point (a, b) = (0, 0),

D = fxx(a, b) · fyy(a, b)− [fxy(a, b)]
2

= fxx(0, 0) · fyy(0, 0)− [fxy(0, 0)]
2

= 2 · 2− [0]2 =

(i) 0 (ii) 2 (iii) 4

since D = 4 > 0 and fxx(0, 0) = 2 > 0, discriminant test
(i) says critical point (a, b) = (0, 0) is a minimum
(ii) says critical point (a, b) = (0, 0) is a maximum
(iii) says critical point (a, b) = (0, 0) is a saddlepoint
(iv) unable to tell if critical point is a minimum/maximum

furthermore, at minimum point (a, b) = (0, 0),
function f(0, 0) = (0)2 + (0)2 = (i) 0 (ii) 2 (iii) 4

4. Maxima–Minima of z = −4
1+x2+y2

.

zero slope in y direction,

f   = 8y = 0

when y = 0
y

x
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x

(a) f(x,y) = -4 / (1 + x  + y  )  2

x

y
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y
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origin, (0,0)

Figure 9.16 (Maxima–Minima of z = −4
1+x2+y2

)
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(a) Possible extrema: locating critical points.

Recall, since

fx(x, y) =
8x

(1 + x2 + y2)2

and

fy(x, y) =
8y

(1 + x2 + y2)2

so critical point(s) which satisfy

fx(x, y) =
8x

(1 + x2 + y2)2
= 0, fy(x, y) =

8y

(1 + x2 + y2)2
= 0

or, since (1 + x2 + y2)
2
> 0, equivalently

fx(x, y) = 8x = 0, fy(x, y) = 8y = 0

is/are (a, b) = (i) (0, 0) (ii) (0, y), y ≥ 0 (iii) (x, 0), x ≥ 0

(b) Identifying which critical point(s) is/are extrema: discriminant test.

Recall,

fxx(x, y) =
8− 32x2

(1 + x2 + y2)3
, fyy(x, y) =

8− 32y2

(1 + x2 + y2)2
, fxy(x, y) =

8xy

(1 + x2 + y2)2

so, at critical point (a, b) = (0, 0),

fxx(0, 0) =
8− 32(0)2

(1 + (0)2 + (0)2)3
=

(i) 0 (ii) 2 (iii) 8

and

fyy(0, 0) =
8− 32(0)2

(1 + (0)2 + (0)2)2
=

(i) 0 (ii) 2 (iii) 8

and

fxy(0, 0) =
8(0)(0)

(1 + (0)2 + (0)2)2
=
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(i) 0 (ii) 2 (iii) 8

and, finally,

D = fxx(a, b) · fyy(a, b)− [fxy(a, b)]
2

= fxx(0, 0) · fyy(0, 0)− [fxy(0, 0)]
2

= 8 · 8− [0]2 =

(i) 0 (ii) 8 (iii) 64

since D = 64 > 0 and fxx(0, 0) = 8 > 0, discriminant test
(i) says critical point (a, b) = (0, 0) is a minimum
(ii) says critical point (a, b) = (0, 0) is a maximum
(iii) says critical point (a, b) = (0, 0) is a saddlepoint
(iv) unable to tell if critical point is a minimum/maximum

furthermore, at minimum point (a, b) = (0, 0),
function f(0, 0) = −4

1+(0)2+(0)2
= (i) −8 (ii) −4 (iii) 4

5. Maxima–Minima of z = 5y + 4x− x2 − y2.

zero slope in y direction,

f   = 5 - 2y = 0

when y = 5/2
y

zero slope 

in x direction,

f   = 4 - 2x = 0

when x = 2
x

x

y

f(x,y)

maximum point,

f   = 0, f   = 0yx

origin, (0,0)

Figure 9.17 (Maxima–Minima of z = 5y + 4x− x2 − y2)

(a) Possible extrema: locating critical points.

Since
fx(x, y) = 0 + 4 · 1x1−1 − 2x2−1 − 0 =

(i) 4 − 2x (ii) 5 − 2y (iii) 2x + 2y

and
fy(x, y) = 5 · 1y1−1 + 0− 0− 2y2−1 =
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(i) 4 − 2x (ii) 5 − 2y (iii) 2x + 2y

so critical point which satisfies

fx(x, y) = 4− 2x = 0, fy(x, y) = 5− 2y = 0

is (a, b) = (i) (0, 0) (ii)
(

2, 5

2

)

(iii)
(

5

2
, 2
)

if 4− 2x = 0, then 4 = 2x, or x = 2; also, if 5− 2y = 0, then 5 = 2y or y = 5

2

(b) Identifying which critical point(s) is/are extrema: discriminant test.

Since

fxx(x, y) =
∂

∂x

(

∂f

∂x

)

=
∂

∂x
(4− 2x) = 0− 2 · 1x1−1 =

(i) 0 (ii) −2 (iii) −4

and

fxy(x, y) =
∂

∂y

(

∂f

∂x

)

=
∂

∂y
(4− 2x) = 0 + 0 =

(i) 0 (ii) −2 (iii) −4

and

fyy(x, y) =
∂

∂y

(

∂f

∂y

)

=
∂

∂y
(5− 2y) = 0− 2 · 1y1−1 =

(i) 0 (ii) −2 (iii) −4

so, summarizing,

fxx(x, y) = −2, fyy(x, y) = −2, fxy(x, y) = 0

so, at critical point (a, b) =
(

2, 5
2

)

,

fxx

(

2,
5

2

)

=

(i) 0 (ii) −2 (iii) −8
fxx
(

2, 5

2

)

= −2 because fxx(x, y) = 2 for any (x, y) including (x, y) =
(

2, 5

2

)

and

fyy

(

2,
5

2

)

=
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(i) 0 (ii) −2 (iii) −8
fyy
(

2, 5

2

)

= −2 because fyy(x, y) = 2 for any (x, y) including (x, y) =
(

2, 5

2

)

and

fxy

(

2,
5

2

)

=

(i) 0 (ii) −2 (iii) −8
fxy
(

2, 5

2

)

= 0 because fxy(x, y) = 0 for any (x, y) including (x, y) =
(

2, 5

2

)

so, at critical point (a, b) =
(

2, 5
2

)

,

D = fxx(a, b) · fyy(a, b)− [fxy(a, b)]
2

= fxx

(

2,
5

2

)

· fyy
(

2,
5

2

)

−
[

fxy

(

2,
5

2

)]2

= (−2)(−2)− [0]2 =

(i) 0 (ii) −4 (iii) 4

since D = 4 > 0 and fxx(0, 0) = −2 < 0, discriminant test

(i) says critical point (a, b) =
(

2, 5
2

)

is a minimum

(ii) says critical point (a, b) =
(

2, 5
2

)

is a maximum

(iii) says critical point (a, b) =
(

2, 5
2

)

is a saddlepoint

(iv) unable to tell if critical point is a minimum/maximum

furthermore, at maximum point (a, b) =
(

2, 5
2

)

,

f
(

2, 5
2

)

= 5
(

5
2

)

+ 4 (2)− (2)2 −
(

5
2

)2
= (i) 8.25 (ii) 9.25 (iii) 10.25

6. Maxima–Minima of z = 2x2 − 2y2.

zero slope in y direction,

f   = 0y

zero slope 

in x direction,

f   = 0x

x

y

f(x,y)

saddlepoint,

f   = 0, f   = 0yx

Figure 9.18 (Maxima–Minima of z = 2x2 − 2y2)
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(a) Possible extrema: locating critical points.

Recall, since
fx(x, y) = 2 · 2x2−1 + 0 =

(i) 4x (ii) −4y (iii) 4x − 4y

and
fy(x, y) = 0− 2 · 2y2−1 =

(i) 4x (ii) −4y (iii) 4x − 4y

so critical point(s) which satisfy

fx(x, y) = 4x = 0, fy(x, y) = −4y = 0

is/are (a, b) = (i) (0, 0) (ii) (4,−4) (iii) (0,−4)

(b) Identifying which critical point(s) is/are extrema: discriminant test.

Since

fxx(x, y) =
∂

∂x

(

∂f

∂x

)

=
∂

∂x
(4x) = 4 · 1x1−1 =

(i) 0 (ii) 4 (iii) −4

and

fxy(x, y) =
∂

∂y

(

∂f

∂x

)

=
∂

∂y
(4x) =

(i) 0 (ii) 4 (iii) −4
fxy = 0 because 4x is a constant with respect to y

and

fyy(x, y) =
∂

∂y

(

∂f

∂y

)

=
∂

∂y
(−4y) = −4 · 1y1−1 =

(i) 0 (ii) 4 (iii) −4

so, summarizing,

fxx(x, y) = 4, fyy(x, y) = −4, fxy(x, y) = 0

so, at critical point (a, b) = (0, 0),

fxx(0, 0) =
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(i) 0 (ii) 4 (iii) −4
fxx(0, 0) = 4 because fxx(x, y) = 4 for any (x, y) including (x, y) = (0, 0)

and
fyy(0, 0) =

(i) 0 (ii) 4 (iii) −4
fyy(0, 0) = −4 because fyy(x, y) = −4 for any (x, y) including (x, y) = (0, 0)

and
fxy(0, 0) =

(i) 0 (ii) 4 (iii) −4
fxy(0, 0) = 0 because fxy(x, y) = 0 for any (x, y) including (x, y) = (0, 0)

so, at critical point (a, b) = (0, 0),

D = fxx(a, b) · fyy(a, b)− [fxy(a, b)]
2

= fxx(0, 0) · fyy(0, 0)− [fxy(0, 0)]
2

= (4)(−4)− [0]2 =

(i) −16 (ii) 16 (iii) 4

since D = −16 < 0, discriminant test
(i) says critical point (a, b) = (0, 0) is a minimum
(ii) says critical point (a, b) = (0, 0) is a maximum
(iii) says critical point (a, b) = (0, 0) is a saddlepoint
(iv) unable to tell if critical point is a minimum/maximum

furthermore, at saddlepoint (a, b) = (0, 0),
function f(0, 0) = 2(0)2 − 2(0)2 = (i) 0 (ii) 2 (iii) 4

7. Application: Maximizing Profit.

zero slope in y direction,

f   = 0y

zero slope 

in x direction,

f   = 0x

x

y

f(x,y)

maximum point,

f   = 0, f   = 0yx

origin, (0,0)
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Figure 9.19 (Maximizing Profit)

Revenue of selling x scarfs, at $5 each, and y pairs of gloves, at $22 each, is
R(x, y) = 5x+22y. Cost of production is C(x, y) = 3x2−3xy+3y2−10x+22y−5.
How many scarfs and gloves must be sold to maximize profit?

(a) Profit. Since

R(x, y) = 5x+ 22y, C(x, y) = 3x2 − 3xy + 3y2 − 10x+ 22y − 5

then profit P (x, y) = R(x, y)− C(x, y) =

(i) −3x2 + 3xy − 3y2 + 15x + 5
(ii) 3x2 + 3xy − 3y2 + 15x + 5
(iii) 6x2 + 3xy − 3y2 + 15x + 5

(b) Possible extrema: locating critical points.

Since P (x, y) = −3x2 + 3xy − 3y2 + 15x+ 5

fx(x, y) = −3 · 2x2−1 + 3x1−1y − 0 + 15x1−1 + 0 =

(i) −6x + 3y + 15 (ii) 3x − 6y (iii) −6

and
fy(x, y) = 0 + 3xy1−1 − 3 · 2y2−1 + 0 + 0 =

(i) −6x + 3y + 15 (ii) 3x − 6y (iii) −6

so critical point which satisfies

fx(x, y) = −6x+ 3y + 15 = 0, fy(x, y) = 3x− 6y = 0

is (a, b) = (i) (0, 0) (ii)
(

30

9
, 15

9

)

(iii)
(

15

9
, 30

9

)

since 3x− 6y = 0, then 3x = 6y, or x = 2y, so −6x+3y+15 = −6(2y) +3y+15 = 0, or −9y+15 = 0,

so y = 15

9
and x = 2

(

15

9

)

= 30

9

(c) Identifying which critical point(s) is/are extrema: discriminant test.

Since

fxx(x, y) =
∂

∂x

(

∂f

∂x

)

=
∂

∂x
(−6x+ 3y + 15) = −6 · 1x1−1 + 0 + 0 =
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(i) 0 (ii) −6 (iii) −4

and

fxy(x, y) =
∂

∂y

(

∂f

∂x

)

=
∂

∂y
(−6x+ 3y + 15) = 0 + 3y1−1 + 0 =

(i) 0 (ii) −6 (iii) 3

and

fyy(x, y) =
∂

∂y

(

∂f

∂y

)

=
∂

∂y
(3x− 6y) = 0− 6y1−1 =

(i) 0 (ii) −6 (iii) 3

so, summarizing,

fxx(x, y) = −6, fyy(x, y) = −6, fxy(x, y) = 3

so, at critical point (a, b) =
(

30
9
, 15

9

)

,

fxx

(

30

9
,
15

9

)

=

(i) −6 (ii) 0 (iii) 3

and

fyy

(

30

9
,
15

9

)

=

(i) −6 (ii) 0 (iii) 3

and

fxy

(

30

9
,
15

9

)

=

(i) −6 (ii) 0 (iii) 3

so, at critical point (a, b) =
(

30
9
, 15

9

)

,

D = fxx(a, b) · fyy(a, b)− [fxy(a, b)]
2

= fxx

(

30

9
,
15

9

)

· fyy
(

30

9
,
15

9

)

−
[

fxy

(

30

9
,
15

9

)]2

= (−6)(−6)− [3]2 =

(i) 0 (ii) 27 (iii) 36
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since D = 27 > 0 and fxx(0, 0) = −6 < 0, discriminant test

(i) says critical point (a, b) =
(

30
9
, 15

9

)

is a minimum

(ii) says critical point (a, b) =
(

30
9
, 15

9

)

is a maximum

(iii) says critical point (a, b) =
(

30
9
, 15

9

)

is a saddlepoint

(iv) unable to tell if critical point is a minimum/maximum

furthermore, at maximum point (a, b) =
(

30
9
, 15

9

)

,

f
(

30
9
, 15

9

)

= −3
(

30
9

)2
+ 3

(

30
9

) (

15
9

)

− 3
(

15
9

)2
+ 15

(

30
9

)

+ 5 =

(i) 8 (ii) 10 (iii) 30

9.4 Lagrange Multipliers

The method of Lagrange multipliers seeks to solve constrained optimization problems:

optimize f(x, y)
subject to g(x, y) = 0,

where f(x, y) is called the objective function and g(x, y) = 0 the (equality) constraint.
The steps in this method include:

• create Lagrange function

F (x, y, λ) = f(x, y)− λ · g(x, y)

a constraint such as r(x, y) = c must be rewritten as g(x, y) = r(x, y)− c = 0

• determine partial derivatives Fx(x, y, λ), Fy(x, y, λ), Fλ(x, y, λ)

• create and solve system of equations

Fx(x, y, λ) = 0, Fy(x, y, λ) = 0, Fλ(x, y, λ) = 0

for critical points (which may be minima, maxima or saddlepoints)

Notice the method of Lagrange multipliers is used to determine extrema for two equations; specifically, it identifies

relative critical points (minima, maxima or saddlepoints) of one (differentiable) function f(x, y) subject to (constrained

by) another equality constraint equation, g(x, y) = 0. Although not considered here, Lagrange multipliers method

can also deal with multiple equality constraints. A generalization of the Lagrange multipliers method, which involves

linear inequalities, is the Kuhn-Tucker method, but this generalization is not considered here. As shown previously,

although typically more difficult to undertake, sometimes it is possible to combine f(x, y) and g(x, y) = 0 by, for

example, solving for x in one equation, substituting into the other equation and then determining extrema from

the one combined equation of one variable. The method of Lagrange multipliers is compared to this method in one

example below.

Exercise 9.4 (Lagrange Multipliers)



Section 4. Lagrange Multipliers (LECTURE NOTES 7) 133

1. Maximizing rectangular garden area with restricted fence length.
Darlene has 200 feet of rabbit fence to enclose a garden she wishes to put in
her backyard. What should be the length and width, (x, y), of this rectangular
garden to maximize the area, A = xy?

(a) Lagrange function

Since there are four sides, two lengths and two widths, of the 200
foot fence around the garden, the constrained optimization problem is

maximize A(x, y) = xy

subject to 2x+ 2y = 200

related Lagrange function is

F (x, y, λ) = A(x, y)− λ · g(x, y) =

(i) xy−λ(200) (ii) xy−λ(2x+2y) (iii) xy−λ(2x+2y− 200)
notice how 2x+ 2y = 200 has been rewritten g(x, y) = 2x− 2y − 200 = 0

(b) partial derivatives

since F (x, y, λ) = xy − λ(2x+ 2y − 200) = xy − 2xλ− 2yλ+ 200λ,

Fx(x, y, λ) = 1x1−1y − 2x1−1λ− 0 + 0 =

(i) y − 2λ (ii) x − 2λ (iii) −2x − 2y + 200

and
Fy(x, y, λ) = xy1−1 − 0− 2y1−1λ+ 0 =

(i) y − 2λ (ii) x − 2λ (iii) −2x − 2y + 200

and
Fλ(x, y, λ) = 0− λ1−1(2x+ 2y − 200) =

(i) y − 2λ (ii) x − 2λ (iii) −2x − 2y + 200

(c) system of equations

Fx(x, y, λ) = 0, Fy(x, y, λ) = 0, Fλ(x, y, λ) = 0

gives

Fx(x, y, λ) = y − 2λ = 0

Fy(x, y, λ) = x− 2λ = 0

Fλ(x, y, λ) = −2x− 2y + 200 = 0
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and so from first two equations,

λ =
x

2
, λ =

y

2

which implies x
2
= y

2
or x = y and so

−2x− 2y + 200 = −2(y)− 2y + 200 = 0

or y = (i) 40 (ii) 50 (iii) 60
since −4y + 200 = 0, then y = 200

4
= 50

and so x = y = (i) 40 (ii) 50 (iii) 60

so (x, y) = (i) (40, 60) (ii) (50, 50) (iii) (60, 40)

also area A(x, y) = xy = 50(50) = (i) 800 (ii) 1000 (iii) 2500

(d) (previous) solution method 2, NOT using Lagrange multipliers

Since
A(x, y) = xy, 2x+ 2y = 200

then 2y = 200− 2x or y = 100− x, so

A = xy = x(100− x) = 100x− x2

and since length and area cannot be negative;
in other words, x ≥ 0 and A = x(100− x) ≥ 0, or

(i) x ≥ 0, x ≤ 100 or [0, 100]
(ii) x ≤ 0, x ≤ 100 or (−∞, 100]
(iii) x ≥ 0, x ≥ 100 or [0,∞)

and since
Ax = 100(1)x2−1 − 2x1−1 = 100− 2x,

there is one critical number at
x = 100

2
= (i) 50 (ii) 2 (iii) 100

and since A(50) = 100(50)− (50)2 = 2500,
there is a critical point (c, A(c)) = (50, 2500).

and so lower endpoint at x = 0,
A(0) = 100(0)− (0)2 = (i) 0 (ii) 100 (iii) 50
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and upper endpoint at x = 100,
A(2) = 100(100)− (100)2 = (i) 0 (ii) 50 (iii) ∞

so, summarizing,

length candidates, x area, A
0 0
50 2500
100 0

maximum area is
(i) 0 (ii) 2500 (iii) 50 (iv) none
which is what we got using method of Lagrange multipliers

and occurs when length x is
(i) 0 (ii) 2500 (iii) 50 (iv) none
which, again, is what we got using method of Lagrange multipliers

also, width y = 100− x = 100− 50 = 50

2. Minimize f(x, y) = x2 + y2 with constraint xy = 1.

(a) Lagrange function

Since constrained optimization problem is

minimize f(x, y) = x2 + y2

subject to xy = 1

related Lagrange function is

F (x, y, λ) = f(x, y)− λ · g(x, y) =

(i) x2 + y2 − λ(xy − 1) (ii) x2 + y2 − λ (iii) x2 + y2 − λ(xy)
notice how xy = 1 has been rewritten g(x, y) = xy − 1 = 0

(b) partial derivatives

since F (x, y, λ) = x2 + y2 − λ(xy − 1) = x2 + y2 − xyλ+ λ,

Fx(x, y, λ) = 2x2−1 + 0− x1−1yλ+ 0 =

(i) 2y − xλ (ii) 2x − yλ (iii) −xy + 1
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and
Fy(x, y, λ) = 0 + 2y2−1 − xy1−1λ+ 0 =

(i) 2y − xλ (ii) 2x − yλ (iii) −xy + 1

and
Fλ(x, y, λ) = 0 + 0− xyλ1−1 + λ1−1 =

(i) 2y − xλ (ii) 2x − yλ (iii) −xy + 1

(c) system of equations

Fx(x, y, λ) = 0, Fy(x, y, λ) = 0, Fλ(x, y, λ) = 0

gives

Fx(x, y, λ) = 2x− yλ = 0

Fy(x, y, λ) = 2y − xλ = 0

Fλ(x, y, λ) = −xy + 1 = 0

and so from first two equations,

λ =
2x

y
, λ =

2y

x

which implies 2x
y
= 2y

x
or x2 = y2 and so from third equation

−xy + 1 = 0

xy = 1

x2y2 = xy multiplying both sides by xy

x2(x2) = 1 since y2 = x2 and xy = 1

x4 = 1

so x = (i) −1 (ii) 1 (iii) ±1
since x4 = 1, then x = ± 4

√
1 = ±1

and, in a similar way, y = (i) −1 (ii) 1 (iii) ±1

and since xy = 1 (implying x and y have the same sign)
(x, y) = (choose one or more) (i) (−1,−1) (ii) (−1, 1) (iii) (1, 1)

also f(x, y) = x2+y2 = (−1)2+(−1)2 = (1)2+(1)2 = (i) 0 (ii) 1 (iii) 2



Section 4. Lagrange Multipliers (LECTURE NOTES 7) 137

(d) minima, maxima or saddlepoint?

Choose (x, y) which satisfies xy = 1; for example, (x, y) =
(

1
3
, 3
)

,

xy =
(

1

3

)

(3) = 1

and notice

f(x, y) = x2+y2 =
(

1

3

)2

+(3)2 =
82

9
> f(x, y) = x2+y2 = (−1)2+(−1)2 = (1)2+(1)2 = 2

in other words, since f(x, y) at choice (x, y) =
(

1
3

)

(3) is larger than

at either critical point, (x, y) = (−1,−1), (x, y) = (1, 1), this indicates
f(x, y) at critical points are
(i) minima (ii) maxima (iii) saddlepoints

3. Minimize f(x, y) = 3x2 + y2 − 2xy with constraint xy = 1.

(a) Lagrange function

Since constrained optimization problem is

minimize f(x, y) = 3x2 + y2 − 2xy
subject to xy = 1

related Lagrange function is

F (x, y, λ) = f(x, y)− λ · g(x, y) =

(i) 3x2 + y2 − 2xy − λ(xy − 1)
(ii) 3x2 + y2 − 2xy − λ

(iii) 3x2 + y2 − 2xy − λ(xy)
notice how xy = 1 has been rewritten g(x, y) = xy − 1 = 0

(b) partial derivatives

since F (x, y, λ) = 3x2 + y2 − 2xy − λ(xy− 1) = 3x2 + y2 − 2xy− xyλ+ λ,

Fx(x, y, λ) = 3 · 2x2−1 + 0− 2x1−1y − x1−1yλ+ 0 =

(i) 6x − 2y − yλ (ii) 2y − 2x − xλ (iii) −xy + 1

and
Fy(x, y, λ) = 0 + 2y2−1 − 2xy1−1 − xy1−1λ+ 0 =
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(i) 6x − 2y − yλ (ii) 2y − 2x − xλ (iii) −xy + 1

and
Fλ(x, y, λ) = 0 + 0− xyλ1−1 + λ1−1 =

(i) 6x − 2y − yλ (ii) 2y − 2x − xλ (iii) −xy + 1

(c) system of equations

Fx(x, y, λ) = 0, Fy(x, y, λ) = 0, Fλ(x, y, λ) = 0

gives

Fx(x, y, λ) = 6x− 2y − yλ = 0

Fy(x, y, λ) = 2y − 2x− xλ = 0

Fλ(x, y, λ) = −xy + 1 = 0

and so from first two equations,

λ =
6x− 2y

y
, λ =

2y − 2x

x

so

6x− 2y

y
=

2y − 2x

x

6x− 2y

y
· x
x

=
2y − 2x

x
· y
y

6x2 − 2xy

xy
=

2y2 − 2xy

xy

6x2 − 2xy = 2y2 − 2xy multiplying both sides by xy

6x2 = 2y2 adding 2xy to both sides

y2 = 3x2
dividing by 3, flipping sides

so from the third equation

−xy + 1 = 0

xy = 1

x2y2 = xy multiplying both sides by xy

x2(3x2) = 1 since y2 = 3x2 and xy = 1

3x4 = 1

so x = (i) − 4

√

1

3
(ii) 4

√

1

3
(iii) ± 4

√

1

3

since 3x4 = 1 or x4 = 1

3
, then x = ± 4

√

1

3
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and, in a similar way, y = (i) − 4
√
3 (ii) 4

√
3 (iii) ± 4

√
3

since x2y2 = xy and x2 = y
2

3
then y

2

3
· y2 = 1, and so y = ± 4

√
3

and since xy = 1 (implying x and y have the same sign)

(x, y) = (i)
(

− 1
4
√

3
,− 4

√
3
)

(ii)
(

− 1
4
√

3
,

4
√
3
)

(iii)
(

1
4
√

3
,

4
√
3
)

also

f(x, y) = 3x2 + y2 − 2xy = 3

(

1
4
√
3

)2

+
(

4
√
3
)2

− 2

(

1
4
√
3

)

(

4
√
3
)

=

(i) 3
√

3
+

√
3 − 2 (ii) 3

√

3
(iii) 3

√

3
+

√
3

because of symmetry, f(x, y) is the same whether

(

− 1
4
√

3
,− 4

√
3

)

or

(

1
4
√

3
,

4
√
3

)

used

also notice
(

4
√
3
)2

=

(

3
1

4

)

2

= 3
1

2 =
√
3

(d) minima, maxima or saddlepoint?

Choose (x, y) which satisfies xy = 1; for example, (x, y) =
(

1
3
, 3
)

,

xy =
(

1

3

)

(3) = 1

and notice

f(x, y) = 3x2 + y2 − 2xy = 3
(

1

3

)2

+ (3)2 − 2
(

1

3

)

(3) =
22

3
≈ 7.33

> f(x, y) = 3

(

1
4
√
3

)2

+
(

4
√
3
)2

− 2

(

1
4
√
3

)

(

4
√
3
)

=
3√
3
+
√
3− 2 ≈ 1.46

in other words, since f(x, y) at choice (x, y) =
(

1
3

)

(3) is larger than at

either critical point, (x, y) =
(

− 1
4
√
3
,− 4

√
3
)

and (x, y) =
(

1
4
√
3
,

4
√
3
)

, this

indicates f(x, y) at critical points are
(i) minima (ii) maxima (iii) saddlepoints

4. Minimize f(x, y) = x2 + y2 + 2z2 with constraint x+ y + z = 1.

(a) Lagrange function

Since constrained optimization problem is

minimize f(x, y) = x2 + y2 + 2z2

subject to x+ y + z = 1



140 Chapter 9. Multivariable Calculus (LECTURE NOTES 7)

related Lagrange function is

F (x, y, z, λ) = f(x, y, z)− λ · g(x, y, z) =

(i) x2 + y2 + 2z2 − λ(x + y + z)
(ii) x2 + y2 − λ(x + y + z − 1)
(iii) x2 + y2 + 2z2 − λ(x+ y + z − 1)
notice how x+ y + z = 1 has been rewritten g(x, y) = x+ y + z − 1 = 0

(b) partial derivatives

since

F (x, y, z, λ) = x2+y2+2z2−λ(x+y+z−1) = x2+y2+2z2−xλ−yλ−zλ+λ

then
Fx(x, y, z, λ) = 2x2−1 + 0 + 0− x1−1λ− 0− 0 + 0 =

(i) 2x − λ (ii) 2y − λ (iii) 4z − λ (iv) −x − y − z + 1

and
Fy(x, y, z, λ) = 0 + 2y2−1 + 0− 0− y1−1λ+ 0 + 0 =

(i) 2x − λ (ii) 2y − λ (iii) 4z − λ (iv) −x − y − z + 1

and
Fz(x, y, z, λ) = 0 + 0 + 2 · 2z2−1 − 0− 0− z1−1λ+ 0 =

(i) 2x − λ (ii) 2y − λ (iii) 4z − λ (iv) −x − y − z + 1

and
Fλ(x, y, z, λ) = 0 + 0 + 0− λ1−1(x+ y + z − 1) =

(i) 2x − λ (ii) 2y − λ (iii) 4z − λ (iv) −x − y − z + 1

(c) system of equations

Fx(x, y, z, λ) = 0, Fy(x, y, z, λ) = 0, Fz(x, y, z, λ) = 0, Fλ(x, y, z, λ) = 0

gives

Fx(x, y, λ) = 2x− λ = 0

Fy(x, y, λ) = 2y − λ = 0

Fy(x, y, λ) = 4z − λ = 0

Fλ(x, y, λ) = −x− y − z + 1 = 0
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and so from first three equations,

λ = 2x = 2y = 4z

or z = x
2
, y = x, so from the last equation

−x− y − z + 1 = 0

−x − (x)−
(

x

2

)

= −1

−5x

2
= −1

so x = (i) −2

5
(ii) 2

5
(iii) ±2

5

and so, since y = x, y = (i) −2

5
(ii) 2

5
(iii) ±2

5

and also, since z = x
2
, z = (i) −1

5
(ii) 1

5
(iii) ±1

5

and so
(x, y, z) = (i)

(

2

5
, 2

5
, 1

5

)

(ii)
(

2

5
,−2

5
, 1

5

)

(iii)
(

1

5
, 1

5
,−1

5

)

also

f(x, y, z) = x2 + y2 + 2z2 =
(

2

5

)2

+
(

2

5

)2

+ 2
(

1

5

)2

=

(i) 8

25
(ii) 9

25
(iii) 10

25

(d) minima, maxima or saddlepoint?

Choose (x, y, z) which satisfies x+ y + z = 1; say, (x, y, z) =
(

1
3
, 1
3
, 1
3

)

,

x+ y + z =
1

3
+

1

3
+

1

3
= 1

and notice

f(x, y, z) = x2 + y2 + 2z2 =
(

1

3

)2

+
(

1

3

)2

+ 2
(

1

3

)2

=
4

9

> f(x, y, z) = x2 + y2 + 2z2 =
(

2

5

)2

+
(

2

5

)2

+ 2
(

1

5

)2

=
10

25

so, since f(x, y, z) at choice (x, y, z) =
(

1
3
, 1
3
, 1
3

)

is larger than at critical

point, (x, y, z) =
(

2
5
, 2
5
, 1
5

)

, this indicates f(x, y, z) at the critical point is

(i) minimum (ii) maximum (iii) saddlepoint
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5. Minimize f(x, y) = 2x2 + y2 + 2xy + 4x with constraint y2 = x+ 1.

(a) Lagrange function

Since constrained optimization problem is

minimize f(x, y) = 2x2 + y2 + 2xy + 4x
subject to y2 = x+ 1

related Lagrange function is

F (x, y, λ) = f(x, y)− λ · g(x, y) =

(i) 2x2 + y2 + 2xy + 4x − λ(y2 − x − 1)
(ii) 2x2 + y2 + 2xy + 4x
(iii) −λ(y2 − x − 1)
notice how y2 = x+ 1 has been rewritten g(x, y) = y2 − x− 1 = 0

(b) partial derivatives

since F (x, y, λ) = 2x2 + y2 + 2xy + 4x − λ(y2 − x − 1) =
2x2 + y2 + 2xy + 4x− λy2 + λx+ λ),

Fx(x, y, λ) = 2 · 2x2−1 + 0 + 2x1−1y + 4x1−1 − 0 + λx1−1 + 0 =

(i) 4x + 2y + 4 + λ (ii) 2y + 2x − 2yλ (iii) −y2 + x + 1

and
Fy(x, y, λ) = 0 + 2y2−1 + 2xy1−1 + 0− 2y2−1λ+ 0 + 0 =

(i) 4x + 2y + 4 + λ (ii) 2y + 2x − 2yλ (iii) −y2 + x + 1

and
Fλ(x, y, λ) = 0 + 0 + 0 + 0− y2 + x+ 1 =

(i) 4x + 2y + 4 + λ (ii) 2y + 2x − 2yλ (iii) −y2 + x + 1

(c) system of equations

Fx(x, y, λ) = 0, Fy(x, y, λ) = 0, Fλ(x, y, λ) = 0

gives

Fx(x, y, λ) = 4x+ 2y + 4 + λ = 0

Fy(x, y, λ) = 2y + 2x− 2yλ = 0

Fλ(x, y, λ) = −y2 + x+ 1 = 0



Section 4. Lagrange Multipliers (LECTURE NOTES 7) 143

and so from first two equations,

λ = 4x+ 2y + 4, λ =
2y + 2x

2y

so

4x+ 2y + 4 =
2y + 2x

2y

4x+ 2y + 4 =
x+ y

y

4xy + 2y2 + 4y = x+ y

4xy + 2y2 + 3y − x = 0

x(4y − 1) + 2y2 + 3y = 0

(y2 − 1)(4y − 1) + 2y2 + 3y = 0 since y2 = x+ 1, then x = y2 − 1

4y3 + y2 − y + 1 = 0

so y ≈ (i) −0.8689 (ii) −0.2450 (iii) −0.4565
let Y1 = 4y3 + y2 − y+1, then MATH Solver 0 ENTER, then ALPHA ENTER, to give X = −.8688...

check there is only one real root (the other two are complex): WINDOW -2 2 1 -0.5 2 1 1, then GRAPH

and so x = y2 − 1 ≈ (i) −0.8689 (ii) −0.2450 (iii) −0.4565
x ≈ (−0.8689)2 − 1 ≈ −0.2450

and (x, y) =
(i) (−0.2450,−0.8689)
(ii) (0.2450,−0.8689)
(iii) (0.2450, 0.8689)

also

f(x, y) = 2x2+y2+2xy+4x ≈ 2(−0.2450)2+(−0.8689)2+2(−0.2450)(−0.8689)+4(−0.8689) ≈

(i) −2.006 (ii) −2.113 (iii) −2.175

(d) minima, maxima or saddlepoint?

Choose (x, y) which satisfies y2 = x+ 1; for example, (x, y) = (0, 1),

y2 = 12 = x+ 1 = 0 + 1

and notice

f(x, y) = 2x2 + y2 + 2xy + 4x = 2(0)2 + (1)2 + 2(0)(1) + 4(0) = 1

> f(x, y) ≈ 2(−0.245)2 + (−0.8689)2 + 2(−0.245)(−0.8689) + 4(−0.8689) ≈ −2.175
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so, since f(x, y) at choice (x, y) = (0, 1) is larger than at critical point,
(x, y) = (−0.2450,−0.8689), this indicates f(x, y) at critical point is
(i) minimum (ii) maximum (iii) saddlepoint

6. Application: profit and electric fans.

Atomic rotation from x proton charge, y muon charge and z quark charge is

R(x, y, z) = −x2 − y2 + z2.

What (x, y, z) charges minimize atomic rotation if there is a total charge of 10?

(a) Lagrange function

Since constrained optimization problem is

minimize f(x, y) = −x2 − 2y2 + z2

subject to x+ y + z = 10

related Lagrange function is

F (x, y, z, λ) = f(x, y, z)− λ · g(x, y, z) =

(i) x2 + y2 + 2z2 − λ(x + y + z)
(ii) x2 + y2 − λ(x + y + z − 1)
(iii) −x2 − 2y2 + z2 − λ(x+ y + z − 10)
notice how x+ y + z = 10 has been rewritten g(x, y) = x+ y + z − 10 = 0

(b) partial derivatives

since

F (x, y, z, λ) = −x2−2y2+z2−λ(x+y+z−10) = −x2−2y2+z2−xλ−yλ−zλ+10λ

then
Fx(x, y, z, λ) = −2x2−1 − 0 + 0− x1−1λ− 0− 0 + 0 =

(i) −2x − λ (ii) −4y − λ (iii) 2z − λ (iv) −x − y − z + 10

and
Fy(x, y, z, λ) = −0− 2 · 2y2−1 + 0− 0− y1−1λ+ 0 + 0 =

(i) −2x − λ (ii) −4y − λ (iii) 2z − λ (iv) −x − y − z + 10

and
Fz(x, y, z, λ) = −0− 0 + 2z2−1 − 0− 0− z1−1λ+ 0 =
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(i) −2x − λ (ii) −4y − λ (iii) 2z − λ (iv) −x − y − z + 10

and
Fλ(x, y, z, λ) = −0− 0 + 0− λ1−1(x+ y + z − 10) =

(i) −2x − λ (ii) −4y − λ (iii) 2z − λ (iv) −x − y − z + 10

(c) system of equations

Fx(x, y, z, λ) = 0, Fy(x, y, z, λ) = 0, Fz(x, y, z, λ) = 0, Fλ(x, y, z, λ) = 0

gives

Fx(x, y, λ) = −2x− λ = 0

Fy(x, y, λ) = −4y − λ = 0

Fy(x, y, λ) = 2z − λ = 0

Fλ(x, y, λ) = −x− y − z + 10 = 0

and so from first three equations,

λ = −2x = −4y = 2z

or z = −x, y = x
2
, so from the last equation

−x− y − z + 10 = 0

−x−
(

x

2

)

− (−x) = −10

−x

2
= −10

so x = (i) 18 (ii) 19 (iii) 20

and so, since y = x
2
, y = (i) 9 (ii) 9.5 (iii) 10

and also, since z = −x, z = (i) −18 (ii) −19 (iii) −20

so (x, y, z) = (i) (20, 10,−10) (ii) (20, 10,−20) (iii) (20,−10,−20)

also

f(x, y, z) = −x2 − 2y2 + z2 = −(20)2 − 2(10)2 + (−20)2 =

(i) −100 (ii) −200 (iii) −300
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(d) minima, maxima or saddlepoint?

Choose (x, y, z) which satisfies x+ y + z = 10; say, (x, y, z) = (0, 0, 10),

x+ y + z = 0 + 0 + 10 = 10

and notice

f(x, y, z) = −x2 − 2y2 + z2 = −(0)2 − 2(0)2 + (10)2 = 100

> f(x, y, z) = −x2 − 2y2 + z2 − (20)2 − 2(10)2 + (−20)2 = −200

so, since f(x, y, z) at choice (x, y, z) = (0, 0, 10) is smaller than at critical
point, (x, y, z) = (20, 10,−20), this indicates f(x, y, z) at critical point is
(i) minimum (ii) maximum (iii) saddlepoint

7. Understanding method of Lagrange multipliers.

f(x,y) = 3 level curve

f(x,y) = 1 level curve

f(x,y) = 2 level curve

ellipses

M

P

N

g(x,y) = 0 constraint

g(x,y) = 1

tangent to BOTH

g(x,y) = 0 and f(x,y) = 3

minimum distance

MPN occurs at point P

where tangent of function f(x,y) 

equals tangent of constraint g(x,y) = 0

Figure 9.20 (Understanding Lagrange Multipliers)

(i) True (ii) False Roughly speaking, minimum distance of path MPN, a
possible function f(x, y), that must touch, is constrained by, g(x, y) = 0 occurs
at point P which has both a tangent to f(x, y), the gradient (“derivative”)
∇f(x, y), and also a tangent to g(x, y), the gradient ∇g(x, y); that is, both
tangents are parallel to one another, although not necessarily of the same length,
so

∇f(x, y) = λ∇g(x, y)

where λ indicates the difference in length. But this equality is equivalent to
creating the Lagrange function

F (x, y, λ) = f(x, y)− λ · g(x, y)

then solving the system of equations

Fx(x, y, λ) = 0, Fy(x, y, λ) = 0, Fλ(x, y, λ) = 0

for critical points (which may be minima, maxima or saddlepoints).


