4.3 The Chain Rule

One possible *composition* of functions g and f is composed function f[g(x)] whose values are given for all x in the domain of g such that g(x) is in the domain of f. Roughly, composed function f[g(x)] takes "output" of g(x) and uses it as "input" of function f(x), or that g(x) is the inner layer and f(x) is the outer layer of the function. The *chain rule* is used to find the derivative of the composed function g = f[g(x)], where g = f(u) and g = g(x), and is given by,

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = f'[g(x)] \cdot g'(x)$$

Exercise 4.3 (The Chain Rule)

1. Composition of functions.

i.
$$Find \ f[g(4)]$$

since $g(4) = (4)^2 - 1 = (i)$ **16** (ii) **17** (iii) **15**
 $f[g(4)] = f[15] = (15)^2 + 1 = (i)$ **225** (ii) **224** (iii) **226**

ii. Find f[g(-1)]

since
$$g(-1) = (-1)^2 - 1 = (i) \mathbf{0}$$
 (ii) $\mathbf{1}$ (iii) $\mathbf{2}$ $f[g(-1)] = f[0] = (0)^2 + 1 = (i) \mathbf{2}$ (ii) $\mathbf{1}$ (iii) $\mathbf{3}$

iii. Find f[g(x)] in general

(a) Let $f(x) = x^2 + 1$ and $g(x) = x^2 - 1$.

$$f[g(x)] = f[x^{2} - 1]$$

$$= [x^{2} - 1]^{2} + 1$$

$$= x^{4} - 2x^{2} + 1 + 1 =$$

(i)
$$x^4 - 2x^2$$
 (ii) $x^4 - 2x^2 + 2$ (iii) $x^4 - 4x^2$

so
$$f[g(4)] = (4)^4 - 2(4)^2 + 2 = (i)$$
 226 (ii) **225** (iii) **224** and $f[g(-1)] = (-1)^4 - 2(-1)^2 + 2 = (i)$ **1** (ii) **2** (iii) **3**

iv. $Find \ g[f(4)] \ (not \ f[g(4)]!)$

since
$$f(4) = (4)^2 + 1 = (i)$$
 15 (ii) **16** (iii) **17** $g[f(4)] = g[17] = (17)^2 - 1 = (i)$ **289** (ii) **290** (iii) **288**

v.
$$Find g[f(-1)]$$

since
$$f(-1) = (-1)^2 + 1 = (i)$$
 1 (ii) **2** (iii) **0** $g[f(-1)] = g[2] = (2)^2 - 1 = (i)$ **3** (ii) **4** (iii) **5**

vi. Find g[f(x)] in general

$$g[f(x)] = g(x^2 + 1)$$
$$= (x^2 + 1)^2 - 1$$

(i)
$$x^4 - 2x^2 + 2$$
 (ii) $x^4 + 2x^2$ (iii) $x^4 - 4x^2$

so
$$g[f(4)] = (4)^4 + 2(4)^2 = (i)$$
 288 (ii) **289** (iii) **290** and $g[f(-1)] = (-1)^4 + 2(-1)^2 = (i)$ **3** (ii) **4** (iii) **5**

(b) Let
$$f(x) = 4x^2 + 4x$$
 and $g(x) = \frac{2}{x}$.

i. Find f/g(x)

$$f[g(x)] = f\left(\frac{2}{x}\right) = 4\left(\frac{2}{x}\right)^2 + 4\left(\frac{2}{x}\right) = \frac{16}{x^2} + \frac{8}{x} = \frac{16}{x^2} + \frac{16}{x^2} + \frac{16}{x^2} = \frac{16}{x^2} = \frac{16}{x^2} + \frac{16}{x^2} = \frac{16}{x^2} + \frac{16}{x^2} = \frac$$

(i)
$$x^4 - 2x^2 + 2$$
 (ii) $x^4 - 2x^2$ (iii) $\frac{16 + 8x}{x^2}$

so
$$f[g(4)] = \frac{16+8(4)}{(4)^2} = (i) 3$$
 (ii) 2 (iii) 1

ii. Find g[f(x)]

$$g[f(x)] = g[4x^2 + 4x] = \frac{2}{4x^2 + 4x} =$$

(i)
$$x^4 - 2x^2 + 2$$
 (ii) $\frac{1}{2x(x+1)}$ (iii) $\frac{16+8x}{x^2}$

so
$$g[f(4)] = \frac{1}{2(4)(4+1)} = (i) \frac{1}{40}$$
 (ii) $\frac{1}{8}$ (iii) $\frac{1}{5}$

(c) Let $f(x) = x^2 + 1$ and $g(x) = \sqrt{x^3 - 1}$.

i. Find f[g(x)]

$$f[g(x)] = f[\sqrt{x^3 - 1}] = (\sqrt{x^3 - 1})^2 + 1 =$$

(i)
$$x^3$$
 (ii) $(x^3-1)^2+1$ (iii) $(x^2+1)^3-1$

ii. Find g[f(x)]

$$g[f(x)] = g[x^2 + 1] = \sqrt{(x^2 + 1)^3 - 1} =$$

(i)
$$\sqrt{x^6 + 3x^4 + 3x^4}$$
 (ii) $x^6 + 3x^4 + 3x^4$ (iii) $(x^2 + 1)^3 - 1$

iii.
$$f[g(x)] = x^3$$

(i) equals (ii) does not equal $g[f(x)] = \sqrt{x^6 + 3x^4 + 3x^4}$

- (d) Decomposing a function into two functions.
 - i. Find f(x) and g(x) such that $f[g(x)] = \frac{1}{\sqrt{3x^2-2}}$, if "inner" function g(x) = (i) $3x^2$ (ii) 3x (iii) $3x^2 2$ then "outer" function f(x) = (i) $\frac{1}{x}$ (ii) $\frac{1}{x^2}$ (iii) $\frac{1}{\sqrt{x}}$ To check decomposition, compose f(x) and g(x):

$$f[g(x)] = f[3x^2 - 2] = \frac{1}{\sqrt{3x^2 - 2}}$$

ii. Find f(x) and g(x) such that $f[g(x)] = \frac{1}{\sqrt{3x^2-2}}$, if "inner" function g(x) = (i) $3x^2$ (ii) $3x^2 - 2$ (iii) 3x then "outer" function f(x) = (i) $\frac{1}{x-2}$ (ii) $\frac{1}{\sqrt{x-2}}$ (iii) $\frac{1}{x^2}$ To check decomposition, compose f(x) and g(x):

$$f[g(x)] = f[3x^2] = \frac{1}{\sqrt{3x^2 - 2}}$$

(The last two examples demonstrates there can be more than one way of decomposing a function.)

iii. Find f(x) and g(x) such that $f[g(x)] = (3x^2 - 2)^4$, $g(x) = (i) 3x^2$ (ii) $3x^2 - 2$ (iii) 3x $f(x) = (i) 3x^3$ (ii) x^4 (iii) x^2 To check decomposition, compose f(x) and g(x):

$$f[g(x)] = f[3x^2 - 2] = (3x^2 - 2)^4$$

iv. Find f(x) and g(x) such that $f[g(x)] = e^{3x^2-2}$, $g(x) = (i) \mathbf{3}x^2 \quad (ii) \mathbf{3}x^2 - \mathbf{2} \quad (iii) \mathbf{3}x$ $f(x) = (i) \mathbf{e}^x \quad (ii) \mathbf{3}x^3 \quad (iii) \mathbf{x}^2$ To check decomposition, compose f(x) and g(x):

$$f[q(x)] = f[3x^2 - 2] = e^{3x^2 - 2}$$

v. Find f(x) and g(x) such that $f[g(x)] = \ln(3x) + 3x + (3x)^2$, g(x) = (i) $\mathbf{3}x$ (ii) $\mathbf{3}x^2$ (iii) $\mathbf{3}x^3$ f(x) = (i) $\ln x^2 + x + 2x$ (ii) $e^x + x + x^2$ (iii) $\ln x + x + x^2$ To check decomposition, compose f(x) and g(x):

$$f[g(x)] = f[3x] = \ln(3x) + (3x) + (3x)^2$$

2. Chain rule. Find the derivative of following functions using the chain rule.

(a)
$$y = (3x + x^2)^2$$

let
$$f[g(x)] = (3x + x^2)^2$$

with "inner" function $g(x) = (i)$ $3x + x^2$ (ii) $3x^2 - 2$ (iii) $3x$ and "outer" function $f(x) = (i)$ x^3 (ii) x^4 (iii) x^2

with derivative
$$g'(x) = (i) 6x - 2$$
 (ii) 3 (iii) $3 + 2x$ and derivative $f'(x) = (i) 3x^2$ (ii) $4x^3$ (iii) $2x$

and so by chain rule

$$f'[g(x)] \cdot g'(x) = f'[3x + x^{2}] \cdot (3 + 2x)$$

$$= 2[3x + x^{2}](3 + 2x)$$

$$= 2(9x + 3x^{2} + 6x^{2} + 2x^{3})$$

$$= 2(9x + 9x^{2} + 2x^{3}) =$$

(i)
$$9x + 9x^2 + 2x^3$$

(ii)
$$18x + 18x^2 + 4x^3$$

$$(iii)$$
 $9+9x+2x^2$

(b)
$$y = \sqrt{3x + x^2}$$

let
$$f[g(x)] = (3x + x^2)^{\frac{1}{2}}$$
 with "inner" function $g(x) = (i) \ 3x^2 - 2$ (ii) $3x$ (iii) $3x + x^2$ and "outer" function $f(x) = (i) \ x^{\frac{1}{2}}$ (ii) $x^{\frac{3}{2}}$ (iii) $x^{\frac{5}{2}}$

with derivative
$$g'(x) = (i) \ 3 + 2x \ (ii) \ 6x - 2 \ (iii) \ 3$$
 and derivative $f'(x) = (i) \ \frac{3}{2}x^{\frac{1}{2}} \ (ii) \ \frac{3}{2}x^{\frac{3}{2}} \ (iii) \ \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$

and so by chain rule

$$f'[g(x)] \cdot g'(x) = f'[3x + x^{2}] \cdot (3 + 2x)$$
$$= \frac{1}{2\sqrt{3x + x^{2}}} (3 + 2x) =$$

(i)
$$\frac{3+2x}{\sqrt{3x+x^2}}$$
 (ii) $\frac{3+2x}{2\sqrt{3x+x^2}}$ (iii) $\frac{3+2x}{3\sqrt{3x+x^2}}$

(c)
$$y = (-2t^4 + 7t)^5$$

let
$$f[g(t)] = (-2t^4 + 7t)^5$$

with "inner" function
$$g(t) = (i) -2t^4$$
 (ii) $-2t^4 + 7t$ (iii) t^5 and "outer" function $f(t) = (i) -2t^4 + 7t$ (ii) t^5 (iii) $-2t^4 - 7t$

with derivative
$$g'(t)=$$
 (i) $5t^4$ (ii) $-2t^4+7t$ (iii) $-8t^3+7$ and derivative $f'(t)=$ (i) $-8t^3+7$ (ii) $5t^4$ (iii) $-8t^3$

and so by chain rule

$$f'[g(t)] \cdot g'(t) = f'[-2t^4 + 7t] \cdot (-8t^3 + 7) =$$

(i)
$$5(-2t^4+7t)^4(-8t^3+7)$$

$$\begin{array}{l} \text{(i) 5} \left(-2 t^4+7 t\right)^4 \left(-8 t^3+7\right) \\ \text{(ii) } \left(-2 t^4+7 t\right)^4 \left(-8 t^3+7\right) \end{array}$$

(iii)
$$(-2t^4+7t)(-8t^3+7)$$

(d)
$$y = (3x^3 + 2x^2 - 4x)^{-4}$$

let
$$f[g(x)] = (3x^3 + 2x^2 - 4x)^{-4}$$
 "inner" function $g(x) = (i) \ 3x^3 + 2x^2$ (ii) $3x^3 + 2x^2 - 4x$ (iii) x^{-4} "outer" function $f(x) = (i) \ -4x^{-5}$ (ii) $3x^3 + 2x^2 - 4x$ (iii) x^{-4}

derivative
$$g'(x) = (i)$$
 $9x^2 + 4x - 4$ (ii) $-4x^{-5}$ (iii) x^{-4} derivative $f'(x) = (i)$ $9x^2 + 4x - 4$ (ii) $-4x^{-5}$ (iii) $-4x^{-5}$

and so by chain rule

$$f'[g(x)] \cdot g'(x) = f'[3x^3 + 2x^2 - 4x] \cdot (9x^2 + 4x - 4)$$
$$= -4(3x^3 + 2x^2 - 4x)^{-5}(9x^2 + 4x - 4) =$$

(i)
$$\frac{-4(9x^2+4x-4)}{(3x^3+2x^2-4x)^5}$$
 (ii) $\frac{(9x^2+4x-4)}{(3x^3+2x^2-4x)^{-5}}$ (iii) $\frac{-4(9x^2+4x-4)}{(3x^3+2x^2-4x)^{-5}}$

3. Chain rule and other rules.

(a)
$$y = 34(3x + x^2)^2$$

let
$$f[g(x)] = 34(3x + x^2)^2$$

with "inner" function $g(x) = (i) \ 3x^2 - 2$ (ii) $3x$ (iii) $3x + x^2$
and "outer" function $f(x) = (i) \ 34x^2$ (ii) x^2 (iii) $34x^3$

with derivative
$$g'(x) = (i) 6x - 2$$
 (ii) $3 + 2x$ (iii) 3 and derivative $f'(x) = (i) 2x$ (ii) $68x$ (iii) $102x^3$

and so by chain rule

$$f'[g(x)] \cdot g'(x) = f'[3x + x^2] \cdot (3 + 2x)$$

$$= 68 [3x + x^{2}] (3 + 2x)$$

$$= 68 (9x + 3x^{2} + 6x^{2} + 2x^{3})$$

$$= 68 (9x + 9x^{2} + 2x^{3}) =$$

- (i) $612x + 612x^2 + 136x^3$
- (ii) $9x + 9x^2 + 2x^3$
- (iii) $612 + 612x + 136x^2$
- (b) Chain rule and product rule. $y = (4x^3 + 5)(3x^3 x^2)^2$

Let
$$u(x) = 4x^3 + 5$$
 and $v(x) = (3x^3 - x^2)^2$

where derivative $u'(x) = (i) \mathbf{12}x^2$ (ii) 4 (iii) -1

and to find derivative v'(x) let $v(x) = f[g(x)] = (3x^3 - x^2)^2$ with "inner" function g(x) = (i) $3x^3 - x^2$ (ii) $3x^2 - 2$ (iii) 3x and "outer" function f(x) = (i) x^3 (ii) x^4 (iii) x^2

with derivative $g'(x) = (i) 9x^2 - 2x$ (ii) 9x - 2 (iii) 3 and derivative f'(x) = (i) 2x (ii) $3x^2$ (iii) $4x^3$

and so by chain rule

$$v'(x) = f'[g(x)] \cdot g'(x) = f'[3x^3 - x^2] \cdot (9x^2 - 2x)$$

$$= 2 [3x^3 - x^2] (9x^2 - 2x)$$

$$= 2 (27x^5 - 9x^4 - 6x^4 + 2x^3)$$

$$= 2 (27x^5 - 15x^4 + 2x^3) =$$

- (i) $9x + 9x^2 + 2x^3$
- (ii) $9 + 9x + 2x^2$
- (iii) $54x^5 30x^4 + 4x^3$

and so v(x)u'(x) =

- (i) $(3x^3 x^2)(12x^2)$
- (ii) $(3x^3-x^2)^2(12x^2)$
- (iii) $(3x^3-x^2)^2(12x)$

and u(x)v'(x) =

- (i) $(4x^2)(18x + 18x^2 + 4x^3)$
- (ii) $(4x^3+5)(54x^5-30x^4+4x^3)$

(iii)
$$(4x^3+5)(3x^3-x^2)^2$$

and so
$$f'(x) = v(x) \cdot u'(x) + u(x) \cdot v'(x) =$$

(i) $(3x^3 - x^2)^2 + (4x^3 + 5)(54x^5 - 30x^4 + 4x^3)$
(ii) $(3x^3 - x^2)^2(12x^2) + (4x^3 + 5)(54x^5 - 30x^4 + 4x^3)$
(iii) $(4x^2) + (36x^5 - 24x^4 + 4x^3)$

(c) Chain rule and product rule. $y = x(x^3 + 7x + 4)^{\frac{1}{3}}$

Let
$$u(x) = x$$
 and $v(x) = (x^3 + 7x + 4)^{\frac{1}{3}}$

where derivative u'(x) = (i) 1 (ii) 2 (iii) 3

and to find derivative v'(x) let $v(x) = f[g(x)] = (x^3 + 7x + 4)^{\frac{1}{3}}$ with "inner" function $g(x) = (i) 3x^2 + 7$ (ii) $x^3 + 7x + 4$ (iii) 3xand "outer" function $f(x) = (i) x^{\frac{1}{3}}$ (ii) $x^{\frac{2}{3}}$ (iii) $x^{\frac{4}{3}}$

with derivative
$$g'(x) = (i) 6x - 2$$
 (ii) $\frac{1}{3}x^{-\frac{2}{3}}$ (iii) $3x^2 + 7$ and derivative $f'(x) = (i) 2x$ (ii) $\frac{1}{3}x^{-\frac{2}{3}}$ (iii) $3x^2 + 7$

and so by chain rule

$$v'(x) = f'[g(x)] \cdot g'(x) = f'[x^3 + 7x + 4] \cdot (3x^2 + 7)$$
$$= \frac{1}{3} \left[x^3 + 7x + 4 \right]^{-\frac{2}{3}} (3x^2 + 7) =$$

(i)
$$\frac{2}{3[x^3+7x+4]^{\frac{2}{3}}}$$
 (ii) $\frac{3x^2+7}{3[x^3+7x+4]^{-\frac{2}{3}}}$ (iii) $\frac{3x^2+7}{3[x^3+7x+4]^{\frac{2}{3}}}$

and so v(x)u'(x) =

(i)
$$(x^3 + 7x + 4)^{-\frac{1}{3}}(1)$$

(ii)
$$(x^3 + 7x + 4)^{\frac{1}{3}}(1)$$

(iii)
$$(x^3 + 7x + 4)^{\frac{2}{3}}(1)$$

and
$$u(x)v'(x) =$$
(i) $\left(\frac{3x^2+7}{3[x^3+7x+4]^{\frac{2}{3}}}\right)$ (ii) $(x)\left(\frac{3x^2+7}{3[x^3+7x+4]^{\frac{2}{3}}}\right)$ (iii) $(x)\left(\frac{3x^2+7}{[x^3+7x+4]^{\frac{2}{3}}}\right)$

and so
$$f'(x) = v(x) \cdot u'(x) + u(x) \cdot v'(x) =$$

and so
$$f'(x) = v(x) \cdot u'(x) + u(x) \cdot v'(x) =$$
(i) $(x^3 + 7x + 4)^{\frac{1}{3}} + \frac{x(3x^2 + 7)}{3[x^3 + 7x + 4]^{\frac{2}{3}}}$

(ii)
$$(x^3 + 7x + 4)^{-\frac{1}{3}} + \frac{x(3x^2 + 7)}{3[x^3 + 7x + 4]^{\frac{2}{3}}}$$

(iii) $(x^3 + 7x + 4)^{\frac{1}{3}} + \frac{3x^2 + 7}{3[x^3 + 7x + 4]^{\frac{2}{3}}}$

(iii)
$$(x^3 + 7x + 4)^{\frac{1}{3}} + \frac{3x^2 + 7}{3[x^3 + 7x + 4]^{\frac{2}{3}}}$$

which equals

$$(x^{3} + 7x + 4)^{\frac{1}{3}} + \frac{x(3x^{2} + 7)}{3[x^{3} + 7x + 4]^{\frac{2}{3}}}$$

$$= \frac{(x^{3} + 7x + 4)^{\frac{1}{3}} \cdot 3(x^{3} + 7x + 4)^{\frac{2}{3}}}{3(x^{3} + 7x + 4)^{\frac{2}{3}}} + \frac{x(3x^{2} + 7)}{3[x^{3} + 7x + 4]^{\frac{2}{3}}}$$

$$= \frac{3(x^{3} + 7x + 4)^{1}}{3(x^{3} + 7x + 4)^{\frac{2}{3}}} + \frac{x(3x^{2} + 7)}{3[x^{3} + 7x + 4]^{\frac{2}{3}}}$$

$$= \frac{3(x^{3} + 7x + 4) + x(3x^{2} + 7)}{3(x^{3} + 7x + 4)^{\frac{2}{3}}}$$

$$= \frac{6x^{3} + 28x + 12}{3(x^{3} + 7x + 4)^{\frac{2}{3}}}$$

(d) Chain rule and quotient rule. $y = \frac{x}{(x^3+7x+4)^{\frac{1}{3}}}$

Let u(x) = x and $v(x) = (x^3 + 7x + 4)^{\frac{1}{3}}$

where derivative $u'(x) = (i) \mathbf{1} \quad (ii) \mathbf{2} \quad (iii) \mathbf{3}$

and to find derivative v'(x) let $v(x) = f[g(x)] = (x^3 + 7x + 4)^{\frac{1}{3}}$ with "inner" function $g(x) = (i) \ 3x^2 + 7$ (ii) 3x (iii) $x^3 + 7x + 4$ and "outer" function $f(x) = (i) \ x^{\frac{2}{3}}$ (ii) $x^{\frac{1}{3}}$ (iii) $x^{\frac{4}{3}}$

with derivative $g'(x) = (i) 6x - 2 (ii) 3x^2 + 7 (iii) \frac{1}{3}x^{-\frac{2}{3}}$ and derivative $f'(x) = (i) \frac{1}{3}x^{-\frac{2}{3}}$ (ii) 2x (iii) $3x^2 + 7$

and so by chain rule

$$v'(x) = f'[g(x)] \cdot g'(x) = f'[x^3 + 7x + 4] \cdot (3x^2 + 7)$$
$$= \frac{1}{3} \left[x^3 + 7x + 4 \right]^{-\frac{2}{3}} (3x^2 + 7) =$$

$$(\mathrm{i}) \ \frac{3x^2 + 7}{3[x^3 + 7x + 4]^{\frac{2}{3}}} \quad (\mathrm{ii}) \ \frac{2}{3[x^3 + 7x + 4]^{\frac{2}{3}}} \quad (\mathrm{iii}) \ \frac{3x^2 + 7}{3[x^3 + 7x + 4]^{-\frac{2}{3}}}$$

and so v(x)u'(x) =

(i)
$$(x^3 + 7x + 4)^{\frac{1}{3}}(1)$$
 (ii) $(x^3 + 7x + 4)^{-\frac{1}{3}}(1)$ (iii) $(x^3 + 7x + 4)^{\frac{2}{3}}(1)$

and
$$u(x)v'(x) =$$
(i) $\left(\frac{3x^2+7}{3[x^3+7x+4]^{\frac{2}{3}}}\right)$ (ii) $(x)\left(\frac{3x^2+7}{3[x^3+7x+4]^{\frac{2}{3}}}\right)$ (iii) $(x)\left(\frac{3x^2+7}{[x^3+7x+4]^{\frac{2}{3}}}\right)$ and so $f'(x) = \frac{v(x)\cdot u'(x)-u(x)\cdot v'(x)}{[u(x)]^2} =$

(i)
$$\frac{(x^3+7x+4)^{\frac{1}{3}} - \frac{x(3x^2+7)}{3[x^3+7x+4]^{\frac{2}{3}}}}{(x^3+7x+4)^{\frac{1}{3}} + \frac{x(3x^2+7)}{3[x^3+7x+4]^{\frac{2}{3}}}}{(x^3+7x+4)^{\frac{2}{3}} + \frac{x(3x^2+7)}{3[x^3+7x+4]^{\frac{2}{3}}}}{(x^3+7x+4)^{\frac{1}{3}} - \frac{x(3x^2+7)}{3[x^3+7x+4]^{\frac{2}{3}}}}$$
(iii)
$$\frac{(x^3+7x+4)^{\frac{1}{3}} - \frac{x(3x^2+7)}{3[x^3+7x+4]^{\frac{2}{3}}}}{(x^3+7x+4)^{\frac{1}{3}}}$$
which equals

$$\frac{(x^3 + 7x + 4)^{\frac{1}{3}} - \frac{x(3x^2 + 7)}{3[x^3 + 7x + 4]^{\frac{2}{3}}}}{(x^3 + 7x + 4)^{\frac{2}{3}}}$$

$$= \frac{\frac{(x^3 + 7x + 4)^{\frac{1}{3}} \cdot 3(x^3 + 7x + 4)^{\frac{2}{3}}}{3(x^3 + 7x + 4)^{\frac{2}{3}}} - \frac{x(3x^2 + 7)}{3(x^3 + 7x + 4)^{\frac{2}{3}}}}{(x^3 + 7x + 4)^{\frac{2}{3}}}$$

$$= \frac{\frac{3(x^3 + 7x + 4)^1}{3(x^3 + 7x + 4)^{\frac{2}{3}}} - \frac{x(3x^2 + 7)}{3(x^3 + 7x + 4)^{\frac{2}{3}}}}{(x^3 + 7x + 4)^{\frac{2}{3}}}$$

$$= \frac{\frac{3(x^3 + 7x + 4) - x(3x^2 + 7)}{3(x^3 + 7x + 4)^{\frac{2}{3}}}}{(x^3 + 7x + 4)^{\frac{2}{3}}}$$

$$= \frac{1}{3} \left[3(x^3 + 7x + 4) - x(3x^2 + 7) \right]$$

$$= \frac{14x + 12}{3}$$

4. Equation of tangent line to
$$y = f(x) = \frac{x}{(x^3 + 7x + 4)^{\frac{1}{3}}}$$
 at $x_1 = 0$. since $f(x_1) = f(1) = \frac{(0)}{((0)^3 + 7(0) + 4)^{\frac{1}{3}}} = (i)$ 0 (ii) $\frac{1}{4^{\frac{1}{3}}}$ (iii) $\frac{1}{16^{\frac{1}{3}}}$ and $f'(x_1) = f'(0) = \frac{14(0) + 12}{3} = (i)$ $\frac{26}{3}$ (ii) $\frac{23}{3}$ (iii) 4 then
$$y - f(x_1) = f'(x_1)(x - x_1)$$
$$y - f(0) = f'(0)(x - 0)$$
$$y - 0 = 4(x - 0)$$

or (i)
$$y = 4x$$
 (ii) $y = 4x + 1$ (iii) $y = 4x - 1$

5. Application: compound interest. If \$700 is invested at an r interest compounded monthly, calculate the rate of

change, A', of future amount, A, with respect to interest rate, r, after 8 years.

What is A' when r = 0.11?

(a) Let
$$A = f[g(r)] = P\left(1 + \frac{r}{m}\right)^{mt} = 700\left(1 + \frac{r}{12}\right)^{(12)8}$$

with "inner" function $g(r) = \text{(i) } 1 + \frac{r}{12} \text{ (ii) } \frac{r}{12} \text{ (iii) } 700\left(1 + \frac{r}{12}\right)$
and "outer" function $f(r) = \text{(i) } 700r^{96} \text{ (ii) } r^{96} \text{ (iii) } 700r^{12}$

with derivative
$$g'(r)=$$
 (i) $\frac{1}{12}$ (ii) $67200r^{95}$ (iii) $3+2x$ and derivative $f'(r)=$ (i) $700r^{95}$ (ii) $67200r^{95}$ (iii) $\frac{1}{12}$

and so by chain rule

$$A'(r) = f'[g(r)] \cdot g'(r) = f'\left[1 + \frac{r}{12}\right] \cdot \left(\frac{1}{12}\right)$$
$$= 67200\left(1 + \frac{r}{12}\right)^{95}\left(\frac{1}{12}\right) =$$

(i)
$$5600 \left(1 + \frac{r}{12}\right)^{95}$$
 (ii) $\left(1 + \frac{r}{12}\right)^{95}$ (iii) $5600 \left(1 + \frac{r}{12}\right)^{96}$

(b)
$$A'(0.11) = 5600 \left(1 + \frac{0.11}{12}\right)^{95} \approx \text{(i) } \mathbf{13325} \quad \text{(ii) } \mathbf{13425} \quad \text{(iii) } \mathbf{13525}$$

4.4 Derivatives of Exponential Functions

The exponential $e \approx 2.71828...$ is defined as

$$\lim_{m \to \infty} \left(1 + \frac{1}{m} \right).$$

The (natural) exponential function has the remarkable property it is its own derivative:

$$\frac{d}{dx}e^x = e^x,$$

whereas the derivative of the exponential function a^x , $a \neq 1$, is

$$\frac{d}{dx}a^x = (\ln a)a^x.$$

Exercise 4.4 (Derivatives of Exponential Functions)

1. Natural exponential functions.

(a) If
$$f(x) = e^x$$
 then $f'(x) = (i) \mathbf{0}$ (ii) e (iii) e^x

(b) Natural exponential and chain rule. $y = 4e^{-7t}$. Let $f[g(t)] = 4e^{-7t}$ with inner function g(t) = -7t and outer function $f(t) = 4e^t$ and g'(t) = (i) - 7 (ii) $-7e^t$ (iii) $4e^{-7t}$ and $f'(t) = (i) \mathbf{4}e^t$ (ii) e^t (iii) $\mathbf{4}$ and so by chain rule

$$f'[g(t)] \cdot g'(t) = f'[-7t] \cdot (-7) = 4e^{-7t}(-7) =$$

(i)
$$-28e^{-7t}$$
 (ii) $-14te^{2t}$ (iii) $-14e^{2t}$

(c) Natural exponential and chain rule. $y = 5e^{2x}$. Let $f[g(x)] = 5e^{2x}$ with inner function g(x) = 2x and outer function $f(x) = 5e^x$ and $g'(x) = (i) 2 (ii) 2x^2 (iii) 4x$ and $f'(x) = (i) \boldsymbol{x}$ (ii) $\boldsymbol{5e^x}$ (iii) $\boldsymbol{e^{2x}}$ and so by chain rule

$$f'[g(x)] \cdot g'(x) = f'[2x] \cdot (2) = 5e^{2x}(2) =$$

- (i) $5xe^{2x}$ (ii) $10e^{2x}$ (iii) $2xe^{2x}$
- (d) Natural exponential and chain rule. Find $\frac{d}{dx}e^{-7\sqrt{x}}$.

Let
$$f[g(x)] = e^{-7\sqrt{x}} = e^{-7x^{\frac{1}{2}}}$$
 and $g(x) = -7x^{\frac{1}{2}}$ and $f(x) = e^x$

and
$$g'(x) = (i) - 7x^{\frac{1}{2}}$$
 (ii) $-\frac{7}{2}x^{-\frac{1}{2}}$ (iii) $-\frac{7}{2}x^{-\frac{3}{2}}$ and $f'(x) = (i)$ x (ii) e^x (iii) e^{2x} and so by chain rule

$$f'[g(x)] \cdot g'(x) = f'\left[-7x^{\frac{1}{2}}\right] \cdot \left(-\frac{7}{2}x^{-\frac{1}{2}}\right) = e^{-7x^{\frac{1}{2}}}\left(-\frac{7}{2}x^{-\frac{1}{2}}\right) = e^{-7x^{\frac{1}{2}}}$$

(i)
$$-\frac{7}{2}x^{-\frac{1}{2}}e^{-7\sqrt{x}}$$
 (ii) $-\frac{7}{2}x^{-\frac{3}{2}}e^{-7\sqrt{x}}$ (iii) $-7x^{\frac{1}{2}}e^{-7\sqrt{x}}$

(e)
$$y = 5e^{2x} - e^{-7\sqrt{x}}$$

Then
$$\frac{dy}{dx} =$$
(i) $\mathbf{10}e^{2x} + \frac{7}{2}x^{-1/2}e^{-7\sqrt{x}}$
(ii) $\mathbf{10}e^{2x} - \frac{7}{2}x^{-1/2}e^{-7\sqrt{x}}$

(ii)
$$10e^{2x} - \frac{7}{2}x^{-1/2}e^{-7\sqrt{x}}$$

(iii)
$$10e^{2x} + 7x^{1/2}e^{-7\sqrt{x}}$$

Hint: Use the answers from the previous two questions.

(f) Natural exponential and product rule. $y = x^3 e^x$.

Let
$$u(x) = x^3$$
 and $v(x) = e^x$
then $u'(x) = (i) \ \boldsymbol{x^3} \quad (ii) \ \boldsymbol{3x^2} \quad (iii) \ \boldsymbol{e^{2x}}$
and $v'(x) = (i) \ \boldsymbol{e^x} \quad (ii) \ \boldsymbol{3x^2} \quad (iii) \ \boldsymbol{x}$
and so $v(x)u'(x) =$
 $(i) \ \boldsymbol{e^x} \quad (\boldsymbol{x^2})$

and
$$u(x)v'(x) =$$

(i)
$$(3x^3)(e^x)$$

(ii) $(x^3)(e^x)$

(ii) $e^{3x} (3x^2)$ (iii) $e^x (3x^2)$

(iii)
$$(x^3)(e^3x)$$

and so
$$f'(x) = v(x) \cdot u'(x) + u(x) \cdot v'(x) =$$

(i) $e^{x}(x^{2}) + (x^{3})(e^{x})$
(ii) $xe^{x} + (x^{3})(e^{x})$

(iii)
$$3x^2e^x + x^3e^x$$

(g) Natural exponential and product rule. $y = (2x+1)^2 e^{3x^5-5x^2}$.

Let
$$u(x) = (2x+1)^2$$
 and $v(x) = e^{3x^5-5x^2}$

then
$$u'(x) =$$
(i) $4x + 4$

and
$$v'(x) =$$
(i) $(3x^5 - 5x^2)e^{3x^5 - 5x^2}$
(ii) $e^{3x^5 - 5x^2}(15x^4 - 10x) = (15x^4 - 10x)e^{3x^5 - 5x^2}$ (chain rule (iii) $e^{3x^5 - 5x^2}$

and so
$$v(x)u'(x) =$$

(i) $e^{3x^5-5x^2}(8x+4)$
(ii) $e^{3x^5-5x^2}(8x)$

(iii)
$$e^{3x^5} (8x+4)$$

and
$$u(x)v'(x) =$$

(i) $(2x+1)^2(15x^4-10x)e^{3x^5-5x^2}$

(ii)
$$(2x)^2(15x^4 - 10x)e^{3x^5 - 5x^2}$$

(iii)
$$(2x+1)^2(15x^4)e^{3x^5-5x^2}$$

and so
$$f'(x) = v(x) \cdot u'(x) + u(x) \cdot v'(x) =$$

(i)
$$e^{3x^5}(8x+4) + (2x+1)^2(15x^4-10x)e^{3x^5-5x^2}$$

(ii)
$$e^{3x^5-5x^2}(8x+4)+(2x+1)^2(15x^4-10x)e^{3x^5}$$

and so
$$f'(x) = v(x) \cdot u'(x) + u(x) \cdot v'(x) =$$

(i) $e^{3x^5} (8x + 4) + (2x + 1)^2 (15x^4 - 10x)e^{3x^5 - 5x^2}$
(ii) $e^{3x^5 - 5x^2} (8x + 4) + (2x + 1)^2 (15x^4 - 10x)e^{3x^5}$
(iii) $e^{3x^5 - 5x^2} (8x + 4) + (2x + 1)^2 (15x^4 - 10x)e^{3x^5 - 5x^2}$
which simplifies to

$$[(8x+4) + (2x+1)^{2}(15x^{4} - 10x)]e^{3x^{5} - 5x^{2}}$$

$$= (60x^{6} - 30x^{5} + 15x^{4} - 40x^{3} + 20x^{2} + 18x + 4)e^{3x^{5} - 5x^{2}}$$

(h) Natural exponential and quotient rule. $y = \frac{(2x+1)^2}{e^{3x^5-5x^2}}$.

Let
$$u(x) = (2x+1)^2$$
 and $v(x) = e^{3x^5-5x^2}$

then
$$u'(x) =$$

(i)
$$4x + 4$$

(ii)
$$2(2x+1)^{2-1}(2)=4(2x+1)=8x+4$$
 (chain rule)

(iii)
$$x+1$$

and
$$v'(x) =$$

(i)
$$(3x^5 - 5x^2)e^{3x^5 - 5x^2}$$

and
$$v'(x) =$$
(i) $(3x^5 - 5x^2)e^{3x^5 - 5x^2}$
(ii) $e^{3x^5 - 5x^2}(15x^4 - 10x) = (15x^4 - 10x)e^{3x^5 - 5x^2}$ (chain rule)
(iii) $e^{3x^5 - 5x^2}$

(iii)
$$e^{3x^5-5x^2}$$

and so
$$v(x)u'(x) =$$

(i)
$$e^{3x^5-5x^2}$$
 (8x)

and so
$$v(x)u'(x) =$$

(i) $e^{3x^5-5x^2}(8x)$
(ii) $e^{3x^5-5x^2}(8x+4)$

(iii)
$$e^{3x^5} (8x+4)$$

and
$$u(x)v'(x) =$$

(i)
$$(2x+1)^2(15x^4-10x)e^{3x^5-5x^2}$$

(ii)
$$(2x)^2(15x^4-10x)e^{3x^5-5x^2}$$

(iii)
$$(2x+1)^2(15x^4)e^{3x^5-5x^2}$$

and so
$$f'(x) = \frac{v(x) \cdot u'(x) - u(x) \cdot v'(x)}{[v(x)]^2} =$$

(i)
$$e^{3x^5} (8x+4) + (2x+1)^2 (15x^4-10x)e^{3x^5-5x^2}$$

(i)
$$e^{3x^5} (8x+4) + (2x+1)^2 (15x^4 - 10x) e^{3x^5 - 5x^2}$$

(ii) $\frac{e^{3x^5 - 5x^2} (8x+4) - (2x+1)^2 (15x^4 - 10x) e^{3x^5 - 5x^2}}{\left[e^{3x^5 - 5x^2}\right]^2}$

(iii)
$$e^{3x^5-5x^2}(8x+4)+(2x+1)^2(15x^4-10x)e^{3x^5}$$

which simplifies to

$$\frac{(8x+4) - (2x+1)^2(15x^4 - 10x)}{e^{3x^5 - 5x^2}} = \frac{-60x^6 - 60x^5 - 15x^4 + 40x^3 + 40x^2 + 18x + 4}{e^{3x^5 - 5x^2}}$$

(i) A limit related to natural exponential function.

$h \rightarrow$	1	0.1	0.01	0.001	0.00001
$f(h) = \frac{e^h - 1}{h} \rightarrow$	1.718	1.052	1.005	1.001	1.000005

(Type 2nd TBLSET 1 1 Ask Auto, then 2nd TABLE 1 ENTER 0.1 ENTER and so on.) so $\lim_{h\to 0}\frac{e^h-1}{h}=$ (i) ${\bf 0}$ (ii) ${\bf 1}$ (iii) ${\bf 2}$.

(j) (i) **True** (ii) **False** If $f(x) = e^x$, then

$$f'(x) = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h}$$

$$= \lim_{h \to 0} \frac{e^x e^h - e^x}{h}$$

$$= e^x \lim_{h \to 0} \frac{e^h - 1}{h} = e^x (1) = e^x \quad \text{(using limit result above)}$$

- 2. Exponential functions.
 - (a) If $f(x) = 5^x$ then $f'(x) = (i) \left(\ln^3 5 \right) 5^x$ (ii) $\left(\ln 5 \right) 5^x$ (iii) $\left(\ln^2 5 \right) 5^x$
 - (b) Exponential and chain rule. $y = 4 \cdot 3^{-7x}$.

Let
$$f[g(x)] = 4 \cdot 3^{-7x}$$
 and $g(x) = -7x$ and $f(x) = 4 \cdot 3^x$

and
$$g'(x) = (i) -7$$
 (ii) $3x$ (iii) $4 \cdot 3^x$ and $f'(x) = (i) 4 \cdot (\ln 3) 3^x$ (ii) $(\ln 3) 3^x$ (iii) $4 \cdot (\ln 3)$ and so by chain rule

$$f'[g(x)] \cdot g'(x) = f'[-7x] \cdot (-7) = 4 \cdot (\ln 3) 3^{-7x} (-7) =$$

$${\rm (i)}\ -7\cdot 3^{-7x}\ln 3 \ \ {\rm (ii)}\ -28\cdot 3^{-7x}\ln 3 \ \ {\rm (iii)}\ -14\cdot 3^{-7x}\ln 3$$

(c) $y = 5(9)^{2x} - x^3$.

Let
$$f[g(x)] = 5 \cdot 9^{2x}$$
 and $g(x) = 2x$ and $f(x) = 5 \cdot 9^{x}$ and $g'(x) = (i)$ **2** (ii) **2** (iii) **5** · **9** and $f'(x) = (i)$ (ln **9**) **9** (ii) **5** · (ln **9**) (iii) **5** · (ln **9**) **9** and so by chain rule

$$f'[g(x)] \cdot g'(x) = f'[2x] \cdot (2) = 5 \cdot (\ln 9) 9^{2x} (2) =$$

(i)
$$(\ln 9) 9^{2x}$$
 (ii) $10 \cdot (\ln 9) 9^{2x}$ (iii) $10 \cdot (\ln 9)$

also since $\frac{d}{dx}(x^3) = (i) 3x^2$ (ii) x^3 (iii) $3x^3$

- then $\frac{dy}{dx} =$ (i) (ln 9) $9^{2x} 3x^2$
- (ii) $10 \cdot (\ln 9) 9^{2x}$
- (iii) $10 \cdot (\ln 9) 9^{2x} 3x^2$
- (d) Exponential and product rule. $y = x^3(5.5)^x$.

Let $u(x) = x^3 \text{ and } v(x) = 5.5^x$

then $u'(x) = (i) \ 3x^2$ (ii) 3x (iii) e^{2x} and $v'(x) = (i) \ 5.5^x$ (ii) $(\ln 5.5)$ (iii) $(\ln 5.5) \ 5.5^x$

and so v(x)u'(x) =

- (i) 5.5^x
- (ii) $3x^3$
- (iii) $(5.5^x)(3x^2)$

and u(x)v'(x) =

- (i) (x^3) $(\ln 5.5)$ 5.5°
- (ii) $(\ln 5.5) 5.5^x$
- (iii) $(3x^3)$ (ln 5.5)

and so $f'(x) = v(x) \cdot u'(x) + u(x) \cdot v'(x) =$

- (i) $(5.5^x)(3x^2) + (3x^3)(\ln 5.5)$
- (ii) $(5.5^x) + (3x^3) (\ln 5.5) 5.5^x$
- (iii) $(5.5^x)(3x^2) + (x^3)(\ln 5.5)5.5^x$

which simplifies to

$$(x^2)(5.5^x)(3+x\ln 5.5)$$

(e) Exponential and quotient rule. $y = \frac{x^3}{(5.5)^x}$.

Let $u(x) = x^3$ and $v(x) = 5.5^x$

then $u'(x) = (i) 3x (ii) 3x^2 (iii) e^{2x}$

and $v'(x) = (i) (\ln 5.5) 5.5^x$ (ii) 5.5^x (iii) $(\ln 5.5)$

and so v(x)u'(x) =

- (i) 5.5^x
- (ii) $3x^2$
- (iii) $(5.5^x)(3x^2)$

and
$$u(x)v'(x) =$$
(i) $(x^3) (\ln 5.5) 5.5^x$
(ii) $(\ln 5.5) 5.5^x$
(iii) $(3x^3) (\ln 5.5)$
and so $f'(x) = \frac{v(x) \cdot u'(x) - u(x) \cdot v'(x)}{[v(x)]^2} =$
(i) $\frac{(5.5^x)(3x^2) - (x^3)(\ln 5.5)5.5^x}{[5.5^x]^2}$
(ii) $(5.5^x) (3x^3) - (3x^3) (\ln 5.5)$
(iii) $(5.5^x) + (3x^3) (\ln 5.5) 5.5^x$
which simplifies to $\frac{(x^2)(3 - x \ln 5.5)}{5.5^x}$

3. Application: radioactive decay. Quantity (in ounces) present at time t (in years)

$$Q(t) = 500(5^{-0.2t})$$

Determine the rate of change of quantity, Q'(t), after t = 4 years.

(a) Let $f[g(t)] = 500 \cdot 5^{-0.2t}$ and g(t) = -0.2t and $f(t) = 500 \cdot 5^t$

and
$$g'(t) = (i) -0.2t$$
 (ii) $500 \cdot 5^t$ (iii) -0.2 and $f'(t) = (i) 500 \cdot (\ln 5) 5^t$ (ii) $(\ln 5) 5^t$ (iii) $500 \cdot (\ln 5)$ and so by chain rule

$$f'[g(t)] \cdot g'(t) = f'[-0.2t] \cdot (-0.2) = 500 \cdot (\ln 5) \, 5^{-0.2t} \, (-0.2) =$$
(i) $-100 \cdot (\ln 5) \, 5^{-0.2t}$ (ii) $(\ln 5) \, 5^{-0.2t}$ (iii) $-100 \cdot (\ln 5)$

(b) So
$$Q'(4) = -100 \cdot (\ln 5) 5^{-0.2(4)} \approx$$

(i) -34.4 (ii) -44.4 (iii) -24.4 years.

4.5 Derivatives of Logarithmic Functions

Derivative of (natural) logarithmic function is:

$$\frac{d}{dx}\ln|x| = \frac{1}{x} = x^{-1}$$

whereas derivative of the *logarithmic function* is:

$$\frac{d}{dx}[\log_a |x|] = \frac{1}{(\ln a)x} = ((\ln a)x)^{-1}.$$

140

Exercise 4.5 (Derivatives of Logarithmic Functions)

- 1. Natural logarithmic functions.
 - (a) If $f(x) = \ln x$ then $f'(x) = (i) \frac{1}{x^2}$ (ii) $\frac{1}{2x}$ (iii) $\frac{1}{x}$
 - (b) Natural logarithmic function and chain rule. $y = \ln 2x$

Let $f[q(x)] = \ln 2x$ and q(x) = 2x and $f(x) = \ln x$

and g'(x) = (i) 2x (ii) 2 (iii) $\ln 2x$ and $f'(x) = (i) \frac{1}{x^2}$ (ii) $\frac{1}{x}$ (iii) $\frac{1}{2x}$ and so by chain rule

$$f'[g(x)] \cdot g'(x) = f'[2x] \cdot (2) = \frac{1}{2x}(2) =$$

- (i) $\frac{1}{x}$ (ii) $\frac{1}{2x}$ (iii) $\frac{1}{3x}$
- (i) **True** (ii) **False** Derivative of $\ln x$ equals derivative of $\ln 2x$, $\frac{d}{dx}(\ln x) = \frac{d}{dx}(\ln 2x)$ (This is true in general: $\frac{d}{dx}(\ln x) = \frac{d}{dx}(\ln ax)$, a a real number.)
- (c) Natural logarithmic function and chain rule. $y = 4 \ln(7\sqrt{x})$

Let $f[g(x)] = 4\ln(7\sqrt{x})$ and $g(x) = 7\sqrt{x} = 7x^{\frac{1}{2}}$ and $f(x) = 4\ln x$

and $g'(x) = (i) \frac{5}{2}x^{-\frac{1}{2}}$ (ii) $\frac{7}{2}x^{-\frac{1}{2}}$ (iii) $\frac{3}{2}x^{-\frac{1}{2}}$ and $f'(x) = (i) \frac{4}{x^2}$ (ii) $\frac{1}{4x}$ (iii) $\frac{4}{x}$ and so by chain rule

$$f'[g(x)] \cdot g'(x) = f'\left[7x^{\frac{1}{2}}\right] \cdot \left(\frac{7}{2}x^{-\frac{1}{2}}\right) = \frac{4}{7x^{\frac{1}{2}}}\left(\frac{7}{2}x^{-\frac{1}{2}}\right) =$$

- (i) $\frac{2}{x}$ (ii) $-\frac{7}{2}x^{-3/2}$ (iii) $\frac{7}{2}x^{-\frac{1}{2}}$
- (d) $y = 5e^{2x} 4\ln(7\sqrt{x})$.

Let $f[g(x)] = 4\ln(7\sqrt{x})$ and $g(x) = 7\sqrt{x} = 7x^{\frac{1}{2}}$ and $f(x) = 4\ln x$

and $g'(x) = (i) \frac{5}{2}x^{-\frac{1}{2}}$ (ii) $\frac{3}{2}x^{-\frac{1}{2}}$ (iii) $\frac{7}{2}x^{-\frac{1}{2}}$ and $f'(x) = (i) \frac{4}{x}$ (ii) $\frac{4}{x^2}$ (iii) $\frac{1}{4x}$ and so by chain rule

$$f'[g(x)] \cdot g'(x) = f'\left[7x^{\frac{1}{2}}\right] \cdot \left(\frac{7}{2}x^{-\frac{1}{2}}\right) = \frac{4}{7x^{\frac{1}{2}}}\left(\frac{7}{2}x^{-\frac{1}{2}}\right) =$$

(i)
$$-\frac{7}{2}x^{-3/2}$$
 (ii) $\frac{7}{2}x^{-\frac{1}{2}}$ (iii) $\frac{2}{x}$

and also let $f[g(x)] = 5e^{2x}$ and g(x) = 2x and $f(x) = 5e^{x}$ and $g'(x) = (i) 2x^{2}$ (ii) 4x (iii) 2 and f'(x) = (i) x (ii) $5e^{x}$ (iii) e^{2x} and so by chain rule

$$f'[g(x)] \cdot g'(x) = f'[2x] \cdot (2) = 5e^{2x}(2) =$$

(i) $10e^{2x}$ (ii) $5xe^{2x}$ (iii) $2xe^{2x}$

So
$$\frac{dy}{dx} = \frac{2}{x} - 10e^{2x} = \text{(i)} \ \frac{2 + 10xe^{2x}}{x} \quad \text{(ii)} \ \frac{2 - 10xe^{2x}}{x} \quad \text{(iii)} \ \frac{10xe^{2x}}{x}$$

(e) Natural logarithmic function and product rule. $y = x^3 \ln x$.

Let
$$u(x) = x^3$$
 and $v(x) = \ln x$

then
$$u'(x)=$$
 (i) $\boldsymbol{3x}$ (ii) $\boldsymbol{3x^2}$ (iii) $\boldsymbol{\ln x}$ and $v'(x)=$ (i) $\frac{1}{x}$ (ii) $\frac{1}{2x}$ (iii) $\boldsymbol{3x^2}$

and so v(x)u'(x) =

- (i) $(\ln x)(3x^2)$
- (ii) $3x^3$
- (iii) $(\ln 2x)(3x^3)$

and u(x)v'(x) =

- (i) $(3x^2)$ $(\frac{1}{x})$
- (ii) (x^3) $\left(\frac{1}{2x}\right)$
- (iii) $(x^3)\left(\frac{1}{x}\right)$

and so $f'(x) = v(x) \cdot u'(x) + u(x) \cdot v'(x) =$

- (i) $(\ln x)(3x^2) + (x^3)(\frac{1}{x})$
- (ii) $(\ln x)(x^3) + (x^3)\left(\frac{1}{x}\right)$
- (iii) $(\ln 2x)(3x^2) + (x^3)(\frac{1}{x})$ which simplifies to

$$3x^2 \ln x + x^2$$

(f) Natural logarithmic function and product rule. $y = (2x+1)^2 \ln(3x^5 - 5x^2)$.

Let
$$u(x) = (2x+1)^2$$
 and $v(x) = \ln(3x^5 - 5x^2)$

then
$$u'(x) = f'[g(x)] \cdot g'(x) = f'[2x+1] \cdot (2) =$$

(i) 4x + 4

(ii)
$$2(2x+1)^{2-1}(2) = 4(2x+1) = 8x+4$$
 (chain rule) (iii) $x+1$

and
$$v'(x) = f'[g(x)] \cdot g'(x) = f'[3x^5 - 5x^2] \cdot (15x^4 - 10x) =$$
(i) $e^{3x^5 - 5x^2} (15x^4 - 10x) = (15x^4 - 10x)e^{3x^5 - 5x^2}$ (chain rule)
(ii) $e^{3x^5 - 5x^2}$

(iii)
$$\left(\frac{1}{3x^5-5x^2}\right) \left(15x^4-10x\right) = \frac{15x^3-10}{3x^4-5x}$$
 (chain rule)

and so
$$v(x)u'(x) =$$

(i)
$$\ln (3x^5 - 5x^2) (8x + 4)$$

(ii)
$$\ln (3x^5 - 5x^2) (8x)$$

(iii)
$$\ln (5x^2) (8x+4)$$

and
$$u(x)v'(x) =$$

(i)
$$(2x+1)^2 \left(\frac{15x^3-10}{3x^4-5x}\right)$$

(i)
$$(2x+1)^2 \left(\frac{15x^3-10}{3x^4-5x}\right)$$

(ii) $(2x+1) \left(\frac{15x^3-10}{3x^4-5x}\right)$

(iii)
$$(2x+1)^2\left(rac{10}{3x^4-5x}
ight)$$

and so
$$f'(x) = v(x) \cdot u'(x) + u(x) \cdot v'(x) =$$

(i)
$$\ln (3x^5 - 5x^2) (8x + 4) + (2x + 1) \left(\frac{15x^3 - 10}{3x^4 - 5x}\right)$$

(ii) $\ln (3x^5) (8x + 4) + (2x + 1)^2 \left(\frac{15x^3 - 10}{3x^4 - 5x}\right)$

(ii)
$$\ln (3x^5) (8x+4) + (2x+1)^2 \left(\frac{15x^3-10}{3x^4-5x}\right)$$

(iii)
$$\ln \left(3 x^5 - 5 x^2\right) \left(8 x + 4\right) + \left(2 x + 1\right)^2 \left(\frac{15 x^3 - 10}{3 x^4 - 5 x}\right)$$

(g) Application: growth rate. Number of insects at time t (in hours) is

$$N(t) = \frac{0.1t + 4}{\ln t}.$$

Determine growth rate, N'(t), after t=3 hours.

Let
$$u(t) = 0.1t + 4$$
 and $v(t) = \ln t$

then
$$u'(t) = (i) \mathbf{0.1} \quad (ii) \mathbf{0.1}t \quad (iii) \mathbf{0.t^2}$$

and
$$v'(t) = (i) \frac{1}{2t}$$
 (ii) $\frac{1}{t}$ (iii) $\frac{1}{3t}$

and so
$$v(t)u'(t) = (i) (\ln t) (0.1) (ii) (\ln 2t) (0.1) (iii) (\ln t) (0.1t)$$

and
$$u(t)v'(t)=$$
 (i) $\left(\mathbf{0.1}t+\mathbf{4}\right)\left(\frac{1}{3t}\right)$ (ii) $\left(\mathbf{0.1}t\right)\left(\frac{1}{t}\right)$ (iii) $\left(\mathbf{0.1}t+\mathbf{4}\right)\left(\frac{1}{t}\right)$

and so
$$N'(t) = \frac{v(t) \cdot u'(t) - u(t) \cdot v'(t)}{[v(t)]^2} =$$
(i) $\frac{(\ln 2t)(0.1) - (0.1t + 4)(\frac{1}{t})}{[\ln t]^2}$

(i)
$$\frac{(\ln 2t)(0.1) - (0.1t + 4)(\frac{1}{t})}{[\ln t]^2}$$

(ii)
$$\frac{(\ln t)(0.1) - (0.1t)(\frac{1}{t})}{[\ln t]^2}$$
(iii)
$$\frac{(\ln t)(0.1) - (0.1t + 4)(\frac{1}{t})}{[\ln t]^2}$$
which simplifies to

$$\frac{0.1t \ln t - 0.1t - 4}{2t \ln t}$$

and so $N'(3) = \frac{0.1(3)\ln(3) - 0.1(3) - 4}{2(3)\ln 3} \approx (i)$ -18.1 (ii) -19.1 (iii) -20.1

(h) (i) **True** (ii) **False** Recall

$$|x| = \begin{cases} x & \text{if } x > 0\\ -x & \text{if } x < 0 \end{cases}$$

and so

$$\frac{d}{dx}\ln|x| = \frac{1}{x}$$

means, if x > 0,

$$\frac{d}{dx}\ln|x| = \frac{d}{dx}\ln x = \frac{1}{x}$$

and also, if x < 0, and using the chain rule,

$$\frac{d}{dx}\ln|x| = f'[g(x)] \cdot g'(x) = f'[-x] \cdot (-1) = \frac{1}{-x}(-1) = \frac{1}{x}$$

(Since $\ln x$, x < 0, does *not* exist, then also derivative of $\ln x$, x < 0, does *not* exist, however, derivative of $\ln |x| = \ln -x$, x < 0, does exist and is $\frac{1}{x}$.)

2. Logarithmic functions.

(a) If
$$f(x) = \log_5 x$$
 then $f'(x) = (i) \frac{1}{\ln 5}$ (ii) $\frac{1}{(\ln 5)x}$ (iii) $\frac{1}{x}$

(b) Logarithmic function and chain rule. $y = \log_{12} 2x$.

Let
$$f[g(x)] = \log_{12} 2x$$
 and $g(x) = 2x$ and $f(x) = \log_{12} x$

and
$$g'(x) = (i) 2$$
 (ii) $2x$ (iii) $\log_{12} 2x$ and $f'(x) = (i) \frac{1}{x}$ (ii) $\frac{1}{(\ln 12)x}$ (iii) $\frac{1}{\ln 12}$ and so by chain rule

$$f'[g(x)] \cdot g'(x) = f'[2x] \cdot (2) = \frac{1}{(\ln 12) 2x} (2) =$$

(i)
$$\frac{1}{x}$$
 (ii) $\frac{1}{x \ln 12}$ (iii) $\frac{1}{\ln 12}$

(c) Logarithmic function and chain rule. $y = \log_7(\ln x)$.

Let $f[g(x)] = \log_7(\ln x)$ and $g(x) = \ln x$ and $f(x) = \log_7 x$

and
$$g'(x) = (i) \frac{1}{x}$$
 (ii) $\frac{1}{12x}$ (iii) $\frac{7}{x}$ and $f'(x) = (i) \frac{1}{(\ln 7)x}$ (ii) $\frac{1}{7x}$ (iii) $\frac{1}{\ln 7}$ and so by chain rule

$$f'[g(x)] \cdot g'(x) = f'[\ln x] \cdot \left(\frac{1}{x}\right) = \frac{1}{(\ln 7)(\ln x)} \left(\frac{1}{x}\right) =$$

(i)
$$\frac{1}{(\ln x)(\ln 7)}$$
 (ii) $\frac{1}{x(\ln 7)}$ (iii) $\frac{1}{x(\ln x)(\ln 7)}$

(d) Logarithmic function and quotient rule. $y = \frac{x^3}{\log_3 x}$.

Let
$$u(x) = x^3$$
 and $v(x) = \log_3 x$
then $u'(x) = (i)$ $3x^3$ (ii) e^{2x} (iii) $3x^2$
and $v'(x) = (i)$ $\frac{1}{\ln 3}$ (ii) $\frac{1}{(\ln 3)x}$ (iii) $\frac{1}{x}$

and so
$$v(x)u'(x) =$$

(i) $\log_3 x^3$

(ii) $(\log_3 x)(3x^2)$

(iii)
$$(\log_3 x^2)$$
 $(3x^3)$

and
$$u(x)v'(x) =$$

(i)
$$\left(\frac{1}{(\ln 3)x}\right)$$

(ii)
$$(x^3)\left(\frac{1}{(\ln 3)}\right)$$

(iii)
$$(x^3)\left(\frac{1}{(\ln 3)x}\right)$$

and so
$$f'(x) = \frac{v(x) \cdot u'(x) - u(x) \cdot v'(x)}{[v(x)]^2} = (i) \frac{(\log_3 x) - (x^3) \left(\frac{1}{(\ln 3)x}\right)}{[\log_3 x]^2}$$
(ii) $\frac{(\log_3 x) \left(3x^2\right) - \left(x^3\right) \left(\frac{1}{(\ln 3)x}\right)}{[\log_3 x]^2}$
(iii) $\frac{(\log_3 x) \left(3x^2\right) - \left(\frac{1}{(\ln 3)x}\right)}{[\log_3 x]^2}$
which simplifies to

(i)
$$\frac{(\log_3 x) - (x^3)(\frac{1}{(\ln 3)x})}{[\log_2 x]^2}$$

(ii)
$$\frac{(\log_3 x)(3x^2) - (x^3)(\frac{1}{(\ln 3)x})}{[\log_3 x]^2}$$

(iii)
$$\frac{(\log_3 x)\left(3x^2\right) - \left(\frac{1}{(\ln 3)x}\right)}{[\log_2 x]^2}$$

which simplifies to

$$\frac{3x^3 (\ln 3) (\log_3 x) - x}{(\ln 3) (\log_3 x)^2}$$

(e) Application. Adult body surface area, S, (in cm²) related to weight, w, is

$$S(w) = w^w.$$

Determine change in surface area, S'(w), at w=2 kilograms.

i. Use your calculator.

Set WINDOW 0 3 1 0 30 10 1

Type
$$Y_1 = X^X$$

GRAPH TRACE 2 ENTER 2nd CALC dy/dx ENTER

$$S'(2) = dy/dx \approx (i)$$
 5.75 (ii) **6.77** (iii) **7.85**

ii. Attempt analytical approach.

Let
$$f(w) = w^w$$
,
so $f'(w) = (i)$ huh? (ii) $w^w (\ln w + 1)$ (iii) $5w^w$

because, so far, although we know how to differentiate functions like $y=5^w$ or $y=w^5$, we do not yet know how to differentiate $y=w^w$; later we will use *implicit* differentiation to show the derivative of $y=w^w$ is $\frac{dy}{dx}=w^w$ (ln w+1).