
Chapter 9

Building the Regression Model II:
Diagnostics

9.1 Model Adequacy For A Predictor Variable–

Partial Regression Plots

SAS program: att8-9-1-read-partial-res-plot

Partial regression plots (added variable plots, adjusted variable plots) are an aid
to identify the nature and strength of the marginal relation for a predictor Xi, given
the other predictors are already in the model. Partial residual plots are also useful in
identifying outliers.
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Figure 9.1 (Example Partial Regression Plots)

Figure (a) above indicates predictor variable X1 provides no additional information
over and above X2, to predict Y . Figures (b) and (c), on the other hand, indicate that
X1 provide an additional linear and curvilinear effect, respectively, over and above
X2, to predict Y .
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196 Chapter 9. Building the Regression Model II: Diagnostics (ATTENDANCE 8)

Exercise 9.1 (Model Adequacy For A Predictor Variable–Partial Regres-
sion Plots)

illumination, Xi1 9 7 11 16 21 19 23 29 31 33
noise, Xi2 15 20 17 22 24 26 28 30 29 37
ability to read, Y 70 70 75 88 91 94 100 92 90 85

Here, the first–order regression model gives

Ŷ = 69.5 + 0.75X1 + 0.04X2

1. (Partial) Regression, Y on X1.
The regression of Y on X1 (alone) is (circle one)
Ŷ (X2) = 70.01 + 0.78X1

Ŷ (X2) = 70.01 + 0.78X2

Ŷ (X2) = 60.30 + 0.75X2

2. Partial Residuals, e(Y |X1).
True / False
The residuals for the regression of Y on X1, e(Y |X1), are

illumination, Xi1 9 7 11 16 21 19 23 29 31 33
ability to read, Y 70 70 75 88 91 94 100 92 90 85

residuals, Y − Ŷ (X1) -7.02 -5.46 -3.57 5.54 4.64 9.20 12.09 -0.58 -4.14 -10.70

3. (Partial) Regression, Y on X2.
The regression of Y on X2 (alone) is (circle one)
Ŷ (X2) = 69.5 + 0.75X1

Ŷ (X2) = 60.30 + 1.02X2

Ŷ (X2) = 60.30 + 0.75X2

4. Partial Residuals, e(Y |X2).
True / False
The residuals for the regression of Y on X2, e(Y |X2), are

noise, Xi2 15 20 17 22 24 26 28 30 29 37
ability to read, Y 70 70 75 88 91 94 100 92 90 85

residuals, Y − Ŷ (X2) -5.54 -10.62 -2.57 5.35 6.31 7.28 11.25 1.22 0.23 -12.90

5. (Partial) Regression, X1 on X2.
The regression of X1 on X2 (alone) is (circle one)
X̂1(X2) = 69.5 + 0.75X1

X̂1(X2) = 60.30 + 1.02X2

X̂1(X2) = −12.29 + 1.30X2

6. Partial Residuals, e(X1|X2).
True / False
The residuals for the regression of X1 on X2, e(X1|X2), are
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illumination, Xi1 9 7 11 16 21 19 23 29 31 33
noise, Xi2 15 20 17 22 24 26 28 30 29 37

residuals, X1 − X̂1(X2) 1.82 -6.67 1.22 -0.27 2.14 -2.46 -1.05 2.35 5.65 -2.73

7. (Partial) Regression, X2 on X1.
The regression of X2 on X1 (alone) is (circle one)
X̂2(X1) = 69.5 + 0.75X1

X̂2(X1) = 11.58 + 0.66X1

X̂2(X1) = −12.29 + 1.30X2

8. Partial Residuals, e(X2|X1).
True / False
The residuals for the regression of X2 on X1, e(X2|X1), are

illumination, Xi1 9 7 11 16 21 19 23 29 31 33
noise, Xi2 15 20 17 22 24 26 28 30 29 37

residuals, X1 − X̂1(X2) -2.56 3.77 -1.89 -0.21 -1.53 1.80 1.14 -0.85 -3.17 3.50

9. Partial Residual Plots
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Figure 9.2 (Partial Regression Plots)

There are two partial residual plots (choose two)

(a) e(Y |X1) versus e(X2|X1)

(b) e(Y |X2) versus e(X1|X2)

(c) e(X1|X2) versus e(X2|X1)

The residual plot in (a), e(Y |X1) versus e(X2|X1), indicates that
(circle one) no / a linear / a curved
X2 variable should be added to a model already containing variable X1.

The residual plot in (b), e(Y |X2) versus e(X1|X2), indicates that
(circle one) no / a linear / a curved
X1 variable should be added to a model already containing variable X2.
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In other words, once one (either one) of the two variables are in the
model, the other variable need not be added.

9.2 Identifying Outlying Y Observations–

Studentized Deleted Residuals

SAS program: att8-9-2-read-student-del-resid

We describe how to identify outlying (not influential) Y (not X) observations in
this section. A scatter plot, where some of the data points are either outlying Y
observations or outlying X observations, is given below.

A

B

C

Figure 9.3 (Outlying Y and X Observations)

Observation A is a outlying (circle one or two) X / Y observation.
Observation B is a outlying (circle one or two) X / Y observation.
Observation C is a outlying (circle one or two) X / Y observation.
Of the three points, only point (choose one) A / B / C is NOT influential in the
sense although it is an outlier, the regression function was “headed its way” in any
case.

Outlying influential Y observations can be identified with large (in absolute value)
studentized deleted residuals. Studentized deleted residuals, ti, are calculated in the
following way,

ti =
ei

√

MSE (i)(1− hii)

where MSE is the mean sums of squared error (from the ANOVA associated with the
regression), hii is a diagonal element of the leverage (hat) matrix and ei is the ith
residual.

Exercise 9.2 (Identifying Outlying Y Observations–Studentized Deleted
Residuals)
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observation, i 1 2 3 4 5 6 7 8 9 10
illumination, Xi1 9 7 11 16 21 19 23 29 31 33
noise, Xi2 15 20 17 22 24 26 28 30 29 37
ability to read, Y 70 70 75 88 91 94 100 92 90 85

1. Largest Studentized Deleted Residual.
The largest studentized deleted residual (RStudent in SAS output) is
observation (choose one) 5 / 7 / 10
where

t10 = −2.5242

The studentized deleted residual associated with observation 10, appears to
be a Y outlier because it is over two and a half (studentized deleted residual)
standard deviations (2.5242 to be exact) from zero.

2. Bonferroni outlier test procedure.
Test if observation 10 is an outlier or not in the Y direction at α = 0.10.

(a) Statement.
The statement of the test is (check none, one or more):

i. H0 : β1 = β2 = 0 versus Ha : β1 > 0, β2 6= 0.

ii. H0 : β1 = β2 = 0 versus Ha : not all βi equal to zero.

iii. H0 : observation Y10 is not an outlier versus Ha : it is an outlier

(b) Test.
The test statistic is |t10| = | − 2.52| = 2.52
The Bonferroni critical value at α = 0.10 is
t(1− α/2n;n− p− 1) = t(1− 0.10/2(10); 10− 3− 1) =
(choose one) 3.71 / 4.32 / 5.99
(Use PRGM INVT ENTER 6 ENTER 0.995 ENTER)

(c) Conclusion.
Since the test statistic, 2.52, is smaller than the critical value, 3.71, we
(circle one) accept / reject the null hypothesis that observation 10 is not
an outlier in the Y direction.

3. True / False
Since observation 10, with the largest studentized deleted residual value, is not
an outlier, then all of the other observations are also not outliers in the Y
direction.

4. Understanding the Studentized Deleted Residuals
The error, ei, is given by

ei = Yi − Ŷi
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and so an observation with large error is one which is a (choose one) large /
small vertical (Y ) distance from the regression line.

The (internally) studentized residual is given by

ri =
ei

s{ei}
=

ei
√

MSE (1− hii)

and so the size of an error, ei, is measured relative to the standard deviation
in the error, s{ei}. An observation where ri is larger than (choose one) one /
two / seven is usually considered an outlier.

The studentized deleted residual is given by

ti =
ei

s{ei}
=

ei
√

MSE(i)(1− hii)

is the identical to ri except MSE(i) in this statistic is based on all the observa-
tions except the ith one. Deleting the ith observation while calculating MSE(i)

and measuring ei relative to a function of this quantity tends to highlight the
influence of the ith observation.

9.3 Identifying Outlying X Observations–Hat Ma-

trix Leverage Values

SAS program: att8-9-3-read-leverage

Outlying X observations (not Y observations!) are identified with large (in abso-
lute value) diagonal elements of the leverage (hat) matrix, hii, called leverage values.

Exercise 9.3 (Identifying Outlying X Observations–Hat Matrix Leverage
Values)

i 1 2 3 4 5 6 7 8 9 10
illumination, Xi1 9 7 11 16 21 19 23 29 31 33
noise, Xi2 15 20 17 22 24 26 28 30 29 37
ability to read, Y 70 70 75 88 91 94 100 92 90 85

1. Observations With Largest Leverages.
The observation with the largest leverage (Hat Diag H) is
observation (choose one) 2 / 9 / 10
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2. Outlying Influential X Observations.
A rule of thumb is if

hii >
2p

n

then the corresponding X values are outliers. Since hii > 2p/n = 2(3)/10 = 0.6,
the following observations are outliers:
(circle none, one or more) none / 2 / 10.

3. Assessing Whether New Observations Are X Outliers.
New observations are outliers if

hnew,new = X′
new
(X′X)−1Xnew

is not within range of the other hii. For example, if

X′
new = [1, 23, 39]

then from SAS, hnew,new = (circle one) 1.53 / 2.14 / 2.83
which is much larger than all of the other hii values,
and so X′ = [1, 23, 39] is an outlier.

4. True / False
∑

hii = p = 3, the number of parameters in the regression equation.

5. True / False
0 ≤ hii ≤ 1.

9.4 Identifying Influential Cases–DFFITS , Cook’s

Distance and DFBETAS Measures

SAS program: att8-9-4-read-influential

AnX or Y observation is influential (as opposed to simply outlying) if its exclusion
causes major changes to the regression function. Three measures of influence are
considered here (all are based on omitting the i case and determining its influence):
DFFITS , Cook’s Distance and DFBETAS Measures.

Exercise 9.4 (Identifying Influential Cases–DFFITS , Cook’s Distance and
DFBETAS Measures)

i 1 2 3 4 5 6 7 8 9 10
illumination, Xi1 9 7 11 16 21 19 23 29 31 33
noise, Xi2 15 20 17 22 24 26 28 30 29 37
ability to read, Y 70 70 75 88 91 94 100 92 90 85
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i (DFFITS )i Di (DFBETAS )k(i), b0 (DFBETAS )k(i), b1 (DFBETAS )k(i), b2
1 -0.7990 0.211 -0.6892 -0.2304 0.4532
2 -1.1964 0.474 0.3319 1.0193 -0.8051
3 -0.2737 0.028 -0.2203 -0.0627 0.1353
4 0.2470 0.022 0.0994 -0.0184 -0.0202
5 0.2342 0.020 0.1395 0.1278 -0.1279
6 0.5285 0.087 -0.1955 -0.3147 0.3219
7 0.6853 0.122 -0.2362 -0.1897 0.2872
8 -0.0359 0.000 -0.0019 -0.0174 0.0088
9 -0.5402 0.107 -0.2257 -0.4439 0.3486
10 -2.7827 1.460 2.1073 0.9972 -1.7837

1. Influence Single i Has On Single Ŷi: (DFFITS )i.

(DFFITS )i =
Ŷi − Ŷi(i)

√

MSE (i)hii

If this measure is large (bigger than 1 for small to medium data sets or bigger

than 2
√

p

n
= 2

√

3
10
≈ 1.1 for large data sets), then the corresponding obser-

vation is influential. For the reading versus illumination data, the influential
points are (look at the (DFFITS )i values above)
(choose two!) 2 / 8 / 10

2. Influence Single i Has On All Ŷ : Cook’s Distance Di.

Di =
e2

i

pMSE

hii

(1− hii)2

If this measure is large (the percentile associated with this measure in a F (p, n−
p) = F (3, 10− 3) = F (3, 7) distribution is greater than 0.20 or more), then the
corresponding observation is influential. For the reading versus illumination
data, the influential points are (pick the two largest Di values above)
(choose two!) 2 / 8 / 10
Notice that, for observation 10 (where D10 = 1.460)

P (F3,7 < 1.460) = 0.69

(2nd DISTR −E99, 1.46, 3, 7) which clearly indicates that this observation
(circle one) is / is not influential.

Also notice that, for observation 2 (where D2 = 0.474)

P (F3,7 < 0.474) = 0.29

which clearly indicates that this observation (circle one) is / is not influential
but not as influential as observation 10.
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3. Influence Single i Has On Each Regression Coefficient bk: (DFBETAS )k(i).

(DFBETAS )k(i) =
bk − bk(i)

√

MSE (i)ckk

, k = 0, 1, . . . , p− 1

If this measure is large (bigger than 1 for small to medium data sets or bigger

than
√

2
n
=

√

2
10
≈ 0.45 for large data sets), than the corresponding observation

is influential. For the reading versus illumination data, the influential points
(look at the three (DFBETAS )k(i) values above)
for b0 are (circle none, one or more) 2 / 8 / 10
for b1 are (circle none, one or more) 2 / 8 / 10
for b2 are (circle none, one or more) 2 / 8 / 10

9.5 Multicollinearity Diagnostics–Variance Infla-

tion Factor

SAS program: att8-9-5-read-vif

The variance inflation factors ((VIF )k) for each of the k regression coefficients is

(VIF )k =
1

1−R2
k

,

where R2
k is the coefficient of multiple determination when Xk is regressed on the

p − 2 other X variables in the model. If the largest (VIF )k, among the k values
associated with the k regression coefficients, is large (greater than ten (10)) this
indicates multicollinearity is a problem.
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Exercise 9.5 (Multicollinearity Diagnostics–Variance Inflation Factor)

i 1 2 3 4 5 6 7 8 9 10
illumination, Xi1 9 7 11 16 21 19 23 29 31 33
noise, Xi2 15 20 17 22 24 26 28 30 29 37
ability to read, Y 70 70 75 88 91 94 100 92 90 85

1. A First Look at Multicollinearity

illumination, X

VIF

noise, X predictor 3, X1 2 3

2

1
2

2
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predictor 5, X predictor 6, X predictor 3, X
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illumination, X predictor 6, X predictor 7, X
1 6 7

2

1
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6
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(a)  model 1

(b)  model 2

(c)  model 3

VIF

VIF

VIFVIFVIF

VIF VIF VIF

Figure 9.4 (A first look at multicollinearity)

From the figure above, the model which most clearly (unambiguously) describes
the response, ability to read, Y , is (choose one)

(a) Model 1: illumination, X1, noise, X2 and predictor 3, X3

(b) Model 2: predictor 5, X5, predictor 4, X4 and predictor 3, X3

(c) Model 3: illumination, X1, predictor 6, X6 and predictor 7, X7

Multicollinearity is a problem because, although the overall model may fit the
data well, because the “variability” of several independent variables overlap
one another (as measured by the (VIF )k), it is difficult to decide which of the
individual variables contribute significantly to the regression relationship.

2. Calculation of Variance Inflation Factors.
Using only the two predictors (illumination and noise) in the data given above,
from SAS we find the variance inflation factors for the two regression coeffi-
cients in the model to both be VIF k = 7.25363, k = 1, 2, which indicates the
multicollinearity (circle one) to be a problem / to not be a problem since
both are less than ten (10).
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3. Understanding the Variance Inflation Factor.
True / False
On the one hand, the denominator of VIF

σ2{b′k} =
(σ′)2

1−R2
k

= (σ′)2(VIF )k

is 1 − R2
k, where R

2
k is related to the correlation for the predictor variables.

Since large correlation implies multicollinearity, small 1 − R2
k also implies

multicollinearity and so large 1
1−R2

k

implies multicollinearity.

On the other hand, the (σ′)2 is a measure of the variance of the stan-
dardized regression coefficients.

In other words, the variance inflation factor (VIF )k measures the factor
(“inflation”) amount the variance of the nonstandardized regression is larger
than variance of the standardized regression coefficients.

4. Informal Ways Of Investigating Multicollinearity
Informal ways of deciding whether multicollinearity exists in a regression model
are (choose none, one or more)

(a) large changes occur in estimated regression coefficients when predictor vari-
able or observation is added or deleted

(b) non–significant regression coefficients of important predictor variables

(c) regression coefficients with the sign opposite of what it should be

(d) large values in rXX

(e) wide CI of regression coefficients of important predictor variables

9.6 Surgical Unit Example

An interesting example.


