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Atomistic simulations have a unique capability to reveal the

material deformation mechanisms and the corresponding

deformation-based constitutive behavior. However, atomistic

simulations are limited by the accessible length and time scales.

In the present work an equivalent crystal lattice method is used

to perform mechanical deformation atomistic simulations of

nanometer to micrometer sized silicon (Si) nanowires at

accelerated time steps. The equivalent crystal lattice method’s

validity is verified by comparing the method’s results with the

results of classical molecular dynamics (MD) simulations at

MD strain rates. The simulations predict that when the nanowire
cross-sectional size exceeds 50 nm, the dependence of the

nanowire Young’s moduli values on the changes in nanowire

cross-sectional size is considerably reduced. Analyses show a

transition in nanowire failure mechanism from being ductile to

being brittle with increase in the nanowire cross-sectional size.

Examinations of the surface effect reveal that below a critical

surface to volume ratio value of 0.05 nm�1, the peak nanowire

strength is independent of further reduction in the surface to

volume ratio value. This finding places a size limit on the

surface effect observed in Si nanowires.
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1 Introduction Silicon (Si) has been the primary
material for semiconductor devices since the invention of
transistors in the 1940s. Si nanowires are an important
technological invention with applicability in new electronic
devices, energy generation devices, etc. [1, 2]. Such usage
requires mechanistic understanding of the nanowire defor-
mation at the length scales of a few nanometer to a few
micrometer. Despite numerous advancements in the proces-
sing and the experimental characterization of nanowires, the
computational characterization of nanowire mechanical defor-
mation at the length scale of experimentally obtained
nanowires has not been performed using atomistic simulations.

In the present work, an advancement in the form of the
equivalent crystal lattice method is presented to perform
classical atomistic simulations at micron length and seconds
time scales. In the equivalent crystal lattice method, the
equivalent lattices with lattice constants that are multiples of a
material’s unit cell crystal lattice are developed while
preserving the fractional coordinates, cohesive energy values,
elastic constants, defect energy values, and phonon dispersion
relations. The equivalent crystal lattice method is used for
understanding Si nanowire deformation mechanics up to a
length scale of fewmmicrometers. The method is integrated in
a scalable parallel molecular dynamics (MD) simulation code
(DLPOLY) [3]. Nanowire deformation mechanics is an
extensively studied field [4]. Due to the vast literature in this
field, here the focus is only on reviewing work related to the Si
nanowire deformation mechanics. Different simulation
methods [e.g., the finite element method (FEM), MD, and
ab initiomethods such as those based on the density functional
theory (DFT)] have been used for analyzing the Si nanowire
deformation mechanics, e.g., Table 1. Continuum simulations
based on FEM require less time and computational effort in
comparison to the atomistic simulations. However, the size
scale limit at which continuum analyses fail is an important
and yet unresolved issue.

Using DFT calculations, Dubois et al. [15] have
predicted that at least two shear systems, (111) <121> and
(110) <110>, are responsible for the limitation of ideal
strength of Si. Roundy and Cohen [16] have predicted using
� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Table 1 Properties of single crystal Si nanowire predicted using experiments and simulations (NR: not reported)

nanowire size (nm) method Young’s
modulus
(GPa)

peak
stress
(GPa)

experiments Li et al. [5] 74 nm� 510 nm� 50 000 nm indentation 72 GPa NR
San Paulo et al. [6] 120–190 nm (dia)� 8–12mm AFM (atomic force

microscope)
186 GPa NR

Hoffmann et al. [7] 90–190 nm (dia)� 500–2000 nm AFM NR 12 (average)
Tabib-Azar et al. [8] 140 nm (dia)� 10 000 nm AFM 93 GPa 0.85

200 nm (dia)� 10 000 nm AFM 150–250 GPa 0.3–0.56
Heidelberg et al. [9] 100–200 nm (dia)� unknown length AFM 158 GPa NR
Han et al. [10] 15–70 nm (dia)� unknown length tension 55–80 GPa NR
Li et al. [11] 12–300 nm (thickness)�

unknown length
resonant
frequency

53–170 GPa NR

simulation Kang and Cai [12] 5 (dia)� 50 MD 139 13.2
Menon et al. [13] 3–4 (dia)� 7.3 tetrahedral MD 147.3 NR

3–4 (dia)� 11.2 Cagelike MD 94.4 NR
Lee and Rudd [14] 0.61–4 (width)� unknown length DFT 29.4–122.5 NR
Hoffmann et al. [7] 90–190 (width)� 500–2000 (length) FEM 7–18.1
DFT simulations that dislocations may not be visible at low
temperature because the entire lattice can become unstable
before a dislocation is induced. MD is the most popular tool
for analyzing Si nanowire deformation mechanics because of
its capability to simulate the behavior of systems with
millions of atoms. However, currently it is challenging to use
MD to simulate nanowire mechanical deformation when
the nanowire diameter is larger than 10 nm and the nanowire
length is more than 100 nm at experimentally accessible
strain rates (�10�1/s) [4].

Two important issues need to be investigated in order to
thoroughly understand the deformation mechanics of Si
nanowires. First, one should answer what would be the origin
of the specimen size effect on mechanical properties; i.e.,
whether the specimen size effect occurs due to diameter,
length, surface area, or other structural effect related to a
nanowire specimen. Reported origins of the specimen size
effect have been predicted as length [7, 17], diameter [10,
11], surface area [18], and surface roughness [19]. Second,
the size limit below which brittle to ductile fracture transition
occurs for Si nanowires is not known. Using tensile
experiments, Han et al. [10] have reported that the brittle
to ductile transition occurs at �60 nm nanowire diameter.
However, brittle to ductile transition has been observed at
�4 nm nanowire diameter during MD simulations [20].

Tremendous research efforts have been directed toward
performing atomistic simulations at experimental length and
time scales with limited success. Again, due to the vast
literature in this field and due to limited space, only a few
approaches are cited. One of the most prominent and
discussed approach for improving accessible length scale of
simulations is the quasi-continuum method [21]. However,
this method does not address scaling in time domain. The
approaches used for such purpose include utilizing a large
number of processors [22], MD temperature acceleration
methods [23], and Hybrid Monte Carlo method (HMC) [24].
� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
In the present work, an equivalent crystal lattice framework
is used to address this problem. The uniqueness of the
method lies in being able to address scaling in length as well
as time scale. A choice can be made to scale either one of the
time scale and length scale or both.

There are two objectives in this paper. First is to compare
the predictions between the equivalent crystal lattice method
and classical MD at MD strain rates (since MD strain rates
cannot be reduced much without a significant increase in
computational cost). Second is to predict the size related
mechanical properties of [100] oriented Si nanowires with
size in the range of existing experimental measurements.
This objective is chosen to understand the capability of
method to predict mechanistic information regarding a
widely studied problem. The method is specific to Si.
Further, for reasons of simplicity, the focus of this research is
on only [100] oriented nanowires. The equivalent crystal
lattice method can be used to predict results at experimental
strain rates. However, in order to compare the method results
with the MD simulation results, the present work reports
analyses only at MD strain rates.

2 Method and framework The investigation
focuses on analyzing nanowire deformation mechanics with
the nanowire diameter ranging from 2.17 nm to 1.74mm. It is
important to note that the equivalent lattices effectively
reproduce classical properties. Therefore, the property
limitation on MD (such as inability to calculate electronic
properties) still applies. In addition, the framework focuses
solely on mechanical properties. However, phonon trans-
mission related properties such as thermal conductivity
could also be analyzed using the framework.

2.1 Interatomic potential Si has a diamond cubic
crystal structure with the lattice constant value of 5.43 Å. The
lattice constants of the equivalent lattices in the present work
www.pss-a.com
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Figure 1 (online color at: www.pss-a.com)
An illustration of equivalent crystal lattice unit
cells. Blue and green dots are the fractional
coordinates of Si atoms. The equivalent lattices
preserve the Si crystal structure, albeit with
larger lattice constants.
are based on the multiples of Si unit cell lattice constant
[10.86 (2� 5.43 Å), 108.6, and 1086 Å]. The equivalent
lattice unit cells have the same crystal structure as an actual
Si unit cell. Figure 1 illustrates this graphically. The well-
known potentials for atomistic simulations of Si are
Stillinger and Weber (SW) [25], Tersoff (T2 and T3) [26],
Dodson (DOD) [27], and Biswas and Hamann (BH) [28]
potentials. None of these potentials have been established as
the superior. SW, T3, and to some extent DOD are good for
simulating elastic properties [29]. T3, SW, DOD, T2, and BH
give fairly good values for predicting structures and
energetics of intrinsic defects [29]. Only T3 correctly
predicts the phase transformation from diamond structure
to b-tin phase [29]. Based on these observations, T3 is
chosen as the potential form of choice for the equivalent
lattices [30, 31]. In this potential, the total atomistic energy
E, as a function of atomic coordinates is described as
fRð
fAð

f
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ð

www
E ¼
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In the above expression, rij is the distance between atoms
i and j, fc is an harmonic function of the interatomic distances,
fR is repulsive interaction term, fA is attractive interaction
term, and bij is a bond order term that depends upon the
atomic position of the surrounding atoms j of an atom i. The
functions fc, fR, and fA are formulated as,
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A detailed information on parameters A, B, R, D, and
other parameters mentioned in Table 2 can be found in the
work of Tersoff [31]. The inter-atomic potentials of the
equivalent lattices are obtained by fitting bulk properties
such as cohesive energy values, bulk elastic constants, and
lattice constants while maintaining the same fractional
coordinates. The bulk modulus as well as the elastic
.pss-a.com
constants of the equivalent crystal lattices should be the
same as those of the original crystal lattice (5.43 Å) since
those properties are not influenced by the lattice unit cell size.
The total lattice energy and atomic mass of an equivalent
lattice unit cell should be rescaled in proportion to the
volume ratio compared to the original (which will be also
called ordinary cell from now on) lattice unit cell. Table 2
lists inter-atomic potential parameters of the equivalent
lattices.

Classical molecular simulations use potentials that are
fitted to static or experimental properties. Sometimes
quantum mechanical datasets are also used. Most of the
dataset is either room temperature or at 0 K. In this research
dataset for potential fitting is based on experimental
measurements that are at room temperature. Since simu-
lations are also performed at room temperature, the
temperature does not have any influence on the performed
simulations. However, if the simulations were performed at
temperatures significantly different from room temperature
such as those in the vicinity of 2000 K results would be
significantly affected by temperature. This issue is the same
as any classical molecular simulations. Classical molecular
simulations are limited to the range the interatomic potential
can accurately reproduce the properties similar to fitted
property dataset.

Table 2 also lists the experimental values of the elastic
constants of Si and compares those values with the
predictions made by the potentials for different equivalent
crystal lattices. The fitting error is within the range of 20% of
experimental values which is similar to the error range of the
T3. Moreover, cohesive and defect energy values predicted
using the interatomic potentials of the equivalent lattices are
also compared with those predicted by the original Tersoff
potential in Table 2. A maximum error of 11% is observed in
the cohesive energy calculations and a maximum error of
13% is observed in the defect energy calculations. These
error values are of the same order as predicted using T3.

2.2 Satisfaction of dynamical requirements The
next step in ensuring correct prediction of properties using
the potentials for the equivalent lattices is that the time step
of the atomistic simulations based on the equivalent crystal
lattice framework reproduces correct dynamical infor-
mation. One way to ensure such a reproduction is to ensure
that the time steps sufficiently resolve atomic vibration
� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Table 2 Tersoff empirical potential parameters and predicted properties for equivalent lattices C: elastic constants, B: bulk modulus, E:
energy (% error in parenthesis)

5.43 Å
(T3) [26]

10.86 Å
(this work)

108.6 Å
(this work)

1086 Å
(this work)

Tersoff
potential
parameters

A (eV) 1830.8 2911.8 9682.2728 12 256.2453586
B (eV) 471.18 1500 2500.0 28 469.546054
l1 (Å�1) 2.4799 0.2125 0.4195 0.04235
l2 (Å�1) 1.7322 1.8166 1.08071 0.008282
a 0 0 0 0
n 0.78734 0.78734 0.78734 0.78734
b 1.0999� 10�6 1.0699� 10�6 1.0699� 10�6 1.0699� 10�6

n 0.78734 0.78734 0.78734 0.78734
c 100390 100390 100390 100 390
d 16.218 16.418 16.418 16.418
h �0.59826 �0.59826 �0.59826 �0.59826

predicted
properties

C11 (GPa) fitting target: 165.7 [32] 142.5 (14) 137.0 (17) 134.86 (18.6) 136.6 (17.5)
C12 (GPa) fitting target: 63.9 [32] 75.4 (18) 70.0 (9.7) 68.13 (6.63) 73.5 (15)
C44 (GPa) fitting target:79.6 [32] 69 (13.3) 67.42 (15) 67 (15.8) 64.8 (18.6)
B (GPa) fitting target: 98 [33] 98 (0.0) 98.5 (0.6) 90.37(7.7) 94.5 (3.5)
lattice E (eV) fitting target: �37.36 [33] �37.04(0.9) �36.175 (0.14) �37.29 (0.1) �37.3(0.05)
predicted vacancy E (eV) 3.7 3.4 3.5 3.7
predicted interstitial E (tetrahedral, eV) 3.8 3.3 3.7 3.9
predicted cohesive E (eV) diamond �4.63 �4.52 �4.66 �4.67

simple cubic �4.31 �4.42 �4.54 �4.53
face center cubic �3.87 �4.30 �4.38 �4.41
body center cubic �4.20 �4.40 �4.49 �4.53
frequencies for the equivalent crystal lattices. In order to
satisfy the conservation of mass requirement, the atomic
mass in the equivalent lattices is scaled as the lattice
constants are scaled up. This is expected to change the
phonon dispersion curves for the new lattices. In order to
examine this issue, phonon dispersion relations (first four
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acoustic branches) corresponding to all three lattices
examined in this research are plotted in Fig. 2. As shown,
all the phonon dispersion relations have the same shape. The
frequency magnitudes, however, are scaled down in
accordance with the scaling magnitude of the lattice
constant. For 2 times scaling of the lattice constant,
0.3 0.4 0.5
tor K 

 Atomic mass=224.7

0.3 0.4 0.5
tor K 

tomic mass=224684000

Figure 2 Phonon dispersion relations for (a)
original Si crystal lattices, (b) crystal lattice
scaled2 times, (c)crystal lattice scaled20 times,
and (d) crystal lattice scaled 200 times.

www.pss-a.com
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Figure 3 (online color at: www.pss-a.com) Stress versus strain
curve for 4� 4� 16 lattice constant supercell of 10.86 Å lattice and
8� 8� 32 lattice constant supercell of5.43 Å lattice. The dimension
is 4.34 nm� 4.34 nm� 17.36 nm for both nanowires.
frequency magnitudes are reduced by ½. For 20 times
scaling, the frequency magnitudes are reduced by 1/20th. We
have examined phonon dispersion relations for higher
frequency braches as well. The trend observed (not shown
here for clarity) is repeated in the exact same manner.

Since frequencies reduce in a manner directly pro-
portional to the increase in the lattice constant values, it can
be concluded that the maximum MD time step should
increase in a directly proportional manner as well. The scaled
up time step values based on this criterion can further be
modified by considering two practical issues: (1) time step
should be such that atoms are constrained to move not more
than 1/20th of the nearest-neighbor distance at five times the
maximum thermal velocity among all atoms in a system; and
(2) time step should be such that atoms are constrained to
move not more than 1/20th of the nearest neighbor distance at the
maximum absolute velocity among all atoms in a system [34].

One also needs to address additional considerations
before finalizing the maximum time step with equivalent
crystal lattices. Namely, we need to satisfy the requirement
of ergodicity as well as stability of NPT (grand canonical
ensemble), NVE (microcanonical ensemble), and NVT
(canonical ensemble) equations of motions [35]. Final time
steps of choice after taking into account all of the above
considerations were 0.5 ps for 1086 Å lattice constant,
0.05 ps for 108.6 Å lattice constant, and 0.005 ps for
10.86 Å lattice constant.

2.3 Simulation details All the reported simulations
are performed at 300 K. In order to control the temperature
and stress, Nose’-Hoover thermostat and barostat are used.
Constant stress NsT ensemble (constant number of particles,
stress, and temperature) is used for statistical thermodyn-
amic description. The strain rate is of the order of 108 s�1 in
all the simulations in order to provide a common ground of
comparison with the MD and the equivalent crystal method
results. Velocity Verlet integration algorithm is used for
integrating classical equations of motion. Visual MD (VMD)
[36] software is used for the visualization of the atomic
deformation. Three different types of nanowire supercell are
constructed corresponding to each equivalent lattice,
Table 3. Along the lateral nanowire supercell surfaces
enough gap is provided (calculated based on cutoff radius) so
that the nanowires examined have free surfaces. The smallest
dimension of the nanowire is 2.17 nm� 2.17 nm�
17.36 nm, which is based on the 5.43 Å Si lattice. The
Table 3 Description of atomistic supercells of nanowires for simu

supercell size 5.43 Å lattice constant 10.86 Å lattice cons

4� 4� 32 2.17 nm� 2.1 nm7� 17.36 nm
(4096 atoms)

4.34 nm� 4.3 nm4� 3
(4096 atoms)

8� 8� 32 4.34 nm� 4.3 nm4� 17.36 nm
(16 384 atoms)

8.7 nm� 8.7 nm� 34
(16 384 atoms)

16� 16� 32 8.7 nm� 8.7 nm� 17.36 nm
(65 536 atoms)

17.4 nm� 17.4 nm� 3
(65 536 atoms)

www.pss-a.com
dimension increases to 1.74mm� 1.74mm� 3.48mm when
1086 Å equivalent lattice is employed.

3 Results Before proceeding with the equivalent
crystal lattice method-based analyses, the MD predictions
of stress–strain curves for an 8� 8� 32 supercell nanowire
made up of original Si crystal lattice atoms were compared
with the predictions of stress–strain curves for a 4� 4� 16
supercell nanowire made up of 10.86 Å equivalent crystal
lattice atoms, Fig. 3. This supercell choice results in the
nanowires with exactly the same sizes. As shown, the
agreement in Young’s moduli value prediction between the
two supercells is within 1% error and the agreement in peak
stress prediction is within 1.5% error. In the case of
nanowires made up of equivalent lattices with lattice
constants of 108.6 and 1086 Å, a direct comparison with
the results for a corresponding nanowire made up of 5.43 Å
lattice constant Si atoms is not achievable because of the
computational infeasibility of simulating billions of atoms at
infeasible strain rates necessary for such comparison.
However, as shown later, the stress–strain curves of the
nanowires with unit cells of larger lattice constants
correspond closely to those of the nanowires made up of
5.43 Å lattice constant and 10.86 Å lattice constant unit cells.

Figure 4 shows a comparison of the fracture mechanism
between the 8� 8� 32 supercell nanowire made up of
original Si crystal lattice atoms and the 4� 4� 16 supercell
lations

tant 108.6 Å lattice constant 1086 Å lattice constant

4.8 nm 43 nm� 43 nm� 348 nm
(4096 atoms)

0.43mm� 0.43mm� 3.48mm
(4096 atoms)

.8 nm 87 nm� 87 nm� 348 nm
(16 384 atoms)

0.87mm� 0.87mm� 3.48mm
16 384 atoms)

4.8 nm 174 nm� 174 nm� 348 nm
(65 536 atoms)

1.74mm� 1.74mm� 348mm
(65 536 atoms)

� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 4 (online color at: www.pss-a.com)
Comparison of fracture behavior between (a)
8� 8� 32 lattice constant supercell nanowire
based on 5.43 Å lattice and (b) 4� 4� 16
lattice constant supercell nanowire based on
10.86 Å equivalent lattice. The supercell
choices correspond to nanowires with exactly
the same sizes.
nanowire made up of 10.86 Å equivalent crystal lattice
atoms. As shown, both the MD and the equivalent crystal
lattice method predict same fracture initiation location and
fracture strain. The fracture separation occurred in ductile
fashion. Prior to separation, crystalline to amorphous
structural transition was observed in regions near the fracture
surfaces. This mechanism has been reported in the
experiments by Han et al. [10] as well as in the simulations
by Menon et al. [13]. In almost all cases, the failure initiated
at the nanowire surfaces. Sometimes, multiple failure-
initiation points are observed on the surfaces.

3.1 Fracture mechanism Figure 5 shows stress–
strain plots for all nanowires. As claimed earlier, stress–
strain curves for all the nanowires correspond closely till the
peak-stress point. The corresponding peak strain falls within
a close range for all the nanowires. A detailed analysis of the
plots in Fig. 5 will be presented in the discussion section. One
important issue to be noticed is that tensile strength is
increasing with increase in lattice size. Widely observed and
discussed surface to volume ratio is behind such effect [18].
It is well documented that higher the ratio less is the tensile
strength. With scaling in lattice constant values the surface to
volume reduces leading to increase in the tensile strength.
Using MD simulations, it has been observed that [110]
nanowires with diameters less than 4 nm fail by ductile
fracture even at room temperature while thicker nanowires
fail by brittle fracture mechanism [20]. Through tensile
experiments, Han et al. have reported brittle to ductile
transition occurred around 60 nm diameter for [110] Si
nanowires [10].
Figure 5 (online color at: www.pss-a.com) Stress–strain curve comp
lattice constants, (b) 8� 8� 32 lattice constant supercell nanowires w
nanowires with all lattice constants.

� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
During simulations, the ductile to brittle transition in
fracture of Si nanowires was also observed, Fig. 6.
Figure 6(a) illustrates the fracture behavior of
8.7 nm� 8.7 nm� 17.36 nm Si nanowire, which clearly
shows the ductile fracture mechanism. Figure 6(b) illustrates
the fracture behavior of 17.4 nm� 17.4 nm� 34.8 nm Si
nanowire with Si lattice with two times lattice constant
(65536 atoms), which clearly shows the brittle fracture
mechanism. Figure 6(c) illustrates the fracture behavior
of 17.4 nm� 17.4 nm� 34.8 nm Si nanowire made up of
original Si crystal lattice showing that the fracture mechan-
ism is not affected by replacing MD with the equivalent
crystal lattice method. The fracture surface examinations in
the case of Fig. 6(b) and (c) revealed that the final separation
is preceded by amorphization at the fracture location. This
observation agrees with the experimental and computational
observations made by other researchers and groups.
Discrepancy in the simulation predictions and experimental
predictions can be attributed to (1) the nanowire orientation
being different from the earlier experiments and calculations
and (2) the nanowires not being the exact same shape as
examined in the experiments.

4 Discussions
4.1 Effect of specimen size on the peak stress

of Si nanowires During analyses of the specimen size
effect in Si nanowires, either nanowire diameter or nanowire
length has been used as the most influencing variable that
affects nanowire strength. Researchers have also noticed that
a large surface to volume ratio in the case of nanowires is
responsible for the nanowire mechanical properties being
arison for (a) 4� 4� 32 lattice constant supercell nanowires with all
ith all lattice constants, (c) 16� 16� 32 lattice constant supercell

www.pss-a.com
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Figure 6 (online color at: www.pss-a.com) Ductile and brittle
fracture mechanisms, respectively, in the cases of (a) 8.7 nm�
8.7 nm� 17.36 nm Si nanowire with original Si lattice (65 536
atoms), (b) 17.4 nm� 17.4 nm� 34.8 nm Si nanowire with Si lattice
with two times lattice constant (65 536 atoms), and (c) 17.4 nm�
17.4 nm� 34.8 nm Si nanowire with original Si lattice (524 288
atoms).
different from the bulk counterparts. However, the critical
value of surface to volume ratio at which the effect of surface
on nanowire strength vanishes has not been examined. To
analyze the effect of surface to volume ratio on the nanowire
mechanical properties, the peak stress values are plotted as a
function of the surface to volume ratio in Fig. 7. Since
multiple samples correspond to the same surface to volume
ratio, Fig. 7 also shows error bar. As shown, the error bar is
unaffected by the change in values of surface to volume ratio.
Figure 7 (online color at: www.pss-a.com) Peak stress as a func-
tion of surface to volume ratio.

www.pss-a.com
However, the peak stress values become independent of the
surface to volume ratio at the ratio values lower than
0.05 nm�1. The peak stress values converge to a value in the
vicinity of 25 GPa. It is well documented that the nanowires’
surfaces act as defect nucleation sites. With increase in the
surface to volume ratio, the available surface area increases.
This directly leads to a higher extent of defect formation and
the corresponding lowering of peak stress values leading to
nanowire softening. When compared to the experimental
peak stresses shown earlier in Table 1, the peak stress
predicted in MD and equivalent crystal lattice simulations
are higher than those predicted in experiments. The reason
for the higher stress is partly the high effective strain rate of
current simulations and partly the absence of initial defects in
the simulated supercells. Experimental measurements are at
lower strain rates and, possibly, in the presence of defects
(based on discussions with Si nanowire growers).

4.2 Effect of specimen size on Young’s
modulus of Si nanowires The transition diameter, as
discussed in the nanowire mechanics literature, is the
maximum nanowire diameter (in the case of present work
it is denoted by the characteristic cross-sectional size which
is the diameter of a circle that confines the square cross-
section of a simulated nanowire) beyond which the nanowire
Young’s modulus value approaches the corresponding bulk
value of the nanowire material. Since the reported simu-
lations employed nanowires with diameter approaching
150 nm, the predicted Young’s moduli can be used to obtain
a trend on the transition diameter. Size limited MD
simulations by different researchers have reported different
transition diameter values for Si nanowires ranging from 4 to
30 nm (mostly less than 10 nm). Figure 8 shows the Young’s
moduli values for Si nanowires predicted by different
researchers as a function of nanowire diameter. A dotted
line is drawn to form a two-part least square fit to the
experimental data. The fit is a good approximation to
the overall data with the exception of data by Ref. [10]. It is to
be noted that experiments used different Si nanowire
Figure 8 (online color at: www.pss-a.com) A comparison of
Young’s moduli predictions as a function of Si nanowire diameter
in experiments and in current simulations.
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growing methods resulting in nanowires with different
surface roughness and varied texture. Therefore, an exact fit
between simulations and experiments is not likely.

As shown in Fig. 8, the results of present work closely
approximate a two-part least square fit. It is clear that the
experimental value of transition diameter in the case of Si
exceeds 50 nm. Previous experiments have conjectured that
the transition diameter should lie in the vicinity of 100 nm
[4, 9, 11]. The simulation results (black filled squares)
closely approximate the experimental trend. As the nanowire
cross-sectional size exceeds 50 nm, the Young’s moduli
values are not affected by the variation in the cross-section
size. As discussed earlier, the present work shows for the first
time that a critical value of surface to volume ratio exists
below which surface effect vanishes. It is clear from Fig. 8
that the critical value of surface to volume ratio corresponds
to a transition diameter value of at least 50 nm beyond which
the Young’s moduli are not affected by the nanowire surface
to volume ratio.

4.3 A perspective on using equivalent lattices
for speeding-up atomistic simulations The essence
of the equivalent crystal method lies in producing equivalent
lattices that have the same crystal structure as that of the
original lattice but have larger lattice constant. As shown
earlier conservation of mass, momentum, and energy is
ensured during simulations. Also, as shown earlier defect
energy values of the equivalent crystals are the same as those
predicted for the original lattices. MD is a classical approach
and the equivalent crystal method replicates MD at higher
length scale and time scale in much the same essence as MD
is performed. Therefore, method has the same limitations as
those of MD. However, the method is able to perform the
calculations performed by MD at much higher length and
time scales. MD, itself, is not great in predicting bond failure
which leads to fracture. Majority of defects nucleate at
atomistic length scales. In that sense the equivalent crystal
method which is performed at higher length scale cannot be
used to understand the nucleation of defects. However, being
performed at higher length and time scale the equivalent
crystal method can be used to understand the propagation
of defects atomistically at higher length and time scales
than MD.

MD is still applicable at the length scale of its
application. In the method when equivalent crystals are
replaced by actual unit cells the method actually is the same
as MD. MD can be used to understand the formation of
defects, and an understanding of mechanisms at time scale
and length scales upto few nanoseconds and nanometers,
respectively. For higher length scales and time scales one can
use scaled up lattices in the equivalent crystal lattice method.
Like MD, the equivalent crystal method based simulations
can be performed at specified finite temperature values.

At the beginning of Section 3, tensile deformation
behavior of two Si nanowire supercells was compared: the
first supercell with 5.43 Å lattice constant and the second
supercell with 10.86 Å lattice constant. The supercells
� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
had the same overall dimension of 4.43 nm�
4.43 nm� 17.36 nm. Using the equivalent lattice with
10.86 Å lattice constant instead of the original Si lattice
with 5.43 Å lattice constant, the number of atoms required to
construct a supercell of 4.43 nm� 4.43 nm� 17.36 nm
dimension is reduced by approximately eight times (16 384
atoms vs. 2048 atoms). At the same time, such replacement
enabled an increase in the simulation time step by five times
(5 fs vs. 1 fs). Correspondingly, the overall computational
time was reduced by approximately ten times (0.29 s/time
step vs. 0.03 s/time step). Since the equivalent lattice method
scales both in length and time scales, a significant reduction
in computing time can be achieved when this method is
employed.

5 Conclusions Atomistic simulations of Si nanowires
are performed using an equivalent crystal lattice method.
The method replaces original Si crystal lattices with larger-
scale exact replicas (called equivalent lattices) that have the
same dynamical properties as approximated by the Tersoff
potential for the original Si crystal lattice. The method’s
results agree well with both the MD simulations and the
experiments. The use of the equivalent lattices increased the
atomistic simulation time step by an order of 500. The
approach is implementable in standard MD codes (DLPOLY
in this case). It is shown that using the method, it is possible to
simulate nanowires with cross-section size ranging from
nanometers to micrometers. The presented analyses have
shown a seamless transition from the classical MD atomistic
scale results to continuum scale experimental results in Si
nanowire deformation mechanics.

Using the method, atomistic simulations of [100]
oriented Si nanowire deformation with diameter approach-
ing 1.74mm were performed for the first time. New findings
related to the effect of surfaces on nanowire Young’s moduli
and peak stress values were reported. The dynamical
deformation analyses predict that the nanowire Young’s
moduli values approach bulk values when cross-sectional
size exceeds 50 nm. Analyses also predict a transition in
failure mechanism from being ductile to being brittle with an
increase in nanowire cross-sectional size. It is shown that
when the nanowire surface to volume ratio value approaches
0.05, the surface effect on the nanowire peak strength
vanishes.

UNCLAS: Dist. A. Approved for public release.
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