Quiz 4 for Mathematics 223 Introductory Analysis I - Spring 2000 Material Covered: Section 3.4 of workbook and text For: Wednesday, 8th March

This is a 15 minute quiz, worth 6% and marked out of 6 points. The total possible points awarded for each question is given in square brackets at the beginning of each question. Anything that can fit on one side of an $8\frac{1}{2}$ by 11 inch piece of paper may be used as a reference during this quiz. A calculator may also be used. No other aids are permitted.

Na	ame (please print): 1	D Number:
	last first	
1.]	Let $f(x) = \frac{x^3 - 6x + 4}{3x^2 - 8}$.	
(a)) [2] Then	
	$\lim_{x \to \infty} f(x) = \underline{\hspace{1cm}}$	
	$\lim_{x \to -\infty} f(x) = \underline{\hspace{1cm}}$	
	$\lim_{x \to -\sqrt{\frac{8}{3}}} - f(x) = \underline{\hspace{1cm}}$	
	$\lim_{x \to \sqrt{\frac{8}{3}}^+} f(x) = \underline{\hspace{1cm}}$	
(b)) [2] The function $f(x)$ has	
	vertical asymptote(s) at	
	horizontal asymptote(s) at	
(c)) [2] The function $f(x)$ has a	
	maximum on the open interval $\left(-\sqrt{\frac{8}{3}}, \sqrt{\frac{8}{3}}\right)$ at $x =$	
	a maximum on the closed interval $[-1.6, 1.6]$ at x	
	. , .	

1. [2] ∞ , $-\infty$, ∞ , $-\infty$ (sketch (-10,10) and (-10,10))

2. [2] vertical: $x = \pm \sqrt{\frac{8}{3}}$; horizontal: none

3. [2] maximum: none; maximum: 1.6