Quiz Practice Questions 7 for Mathematics 223 Introductory Analysis I - Fall 2000 Material Covered: Sections 4.5.4.6 of workbook and text For: Friday, 1st December

This is a 15 minute quiz, worth 5% and marked out of 5 points. The total possible points awarded for each question is given in square brackets at the beginning of each question. Anything that can fit on one side of an $8\frac{1}{2}$ by 11 inch piece of paper may be used as a reference during this quiz. A calculator may also be used. No other aids are permitted.

Name (please print):	. ID Number:
last	
1. [1 point] Let $f(x) = 5^x$.	
Then $f'(x) = \underline{\hspace{1cm}}$.	
2. [1 point] Let $f(x) = \log_3 x$.	
Then $f'(x) = \underline{\hspace{1cm}}$.	
3. [1 point] Let $f(x) = (\log_8 x) (\sqrt[3]{6x})$.	
Then $f'(x) =$	
4. [2 points] Let $D(p) = 17p + 3.5p^2 - 2p^3$.	
1. $E(p) = $	

2. At p = 1.5, the demand (circle one)

is inelastic / has unit elasticity / elastic.

(1)
$$5^x \ln 5$$

(2)
$$\frac{1}{x \ln 3}$$

(3)
$$\sqrt[3]{6x} \frac{1}{x \ln 8} + \frac{1}{3} (6x)^{-2/3} (6) \log_8 x$$

(4) elasticity

(a)
$$E(p) = -\frac{pD'(p)}{D(p)} = -\frac{p(17+7p-6p^2)}{17p+3.5p^2-2p^3} = \frac{-17p-7p^2+6p^3}{17p+3.5p^2-2p^3}$$

(b) inelastic since
$$E(1.5) = -0.789$$