Quiz 4 for Mathematics 223 Introductory Analysis I - Fall 1999 Material Covered: Section 3.4 of workbook and text For: 22nd October

This is a 15 minute quiz, worth 6% and marked out of 6 points. The total possible points awarded for each question is given in square brackets at the beginning of each question. Anything that can fit on one side of an $8\frac{1}{2}$ by 11 inch piece of paper may be used as a reference during this quiz. A calculator may also be used. No other aids are permitted.

\mathbf{N}	ame (please print): ID Number:
	last first
1.	[2] Consider the function $f(x) = \frac{x^2 - 6x - 4}{3x^2 - 18}$
	$\lim_{x \to \infty} f(x) = _$
	$\lim_{x \to -\infty} f(x) = _$
	$\lim_{x \to -\sqrt{\frac{18}{3}}} f(x) = \underline{\qquad}$
	$\lim_{x \to \sqrt{\frac{18}{3}}^{-}} f(x) = _$
2.	[2] The function $\frac{2x+13}{4x^2-2}$ has
	vertical asymptote(s) at
	horizontal asymptote(s) at
3.	[2] Identify the extreme points of $f(x) = \frac{4x^2}{x^2+2}$
	on the closed interval $[-10, 10]$

- **1.** [2] $\frac{1}{3}$; $\frac{1}{3}$; ∞ ; ∞
- 2. [2] vertical: $4x^2 2 = 0$ at $x = \pm \frac{1}{\sqrt{2}}$; and horizontal: at $\lim_{x \to \infty} \frac{2x+13}{4x^2-2} = \lim_{x \to \infty} \frac{2x/x^2 + 13/x^2}{4x^2/x^2 - 2/x^2} = \lim_{x \to \infty} \frac{2/x+13/x^2}{4-2/x^2} = 0$
- **3.** [2] minimum is at zero; maxima are at ± 10