Quiz 5 for Mathematics 224 Introductory Analysis II - Spring 2001 Material Covered: Sections B.3, B.4 of workbook and text For: Friday, 29th March

This is a 15 minute quiz, worth 5% and marked out of 5 points. The total possible points awarded for each question is given in square brackets at the beginning of each question. Anything that can fit on one side of an $8\frac{1}{2}$ by 11 inch piece of paper may be used as a reference during this quiz. A calculator may also be used. No other aids are permitted.

```
Name (please print): ________. ID Number: _____.
```

- 1. Consider $\frac{dy}{dx} = y + 2xy$.
- (a) [1 point] The slopes of this differential equation are positive when (circle none, one or more!) y < 0, 1 + 2x < 0 / y > 0, 1 + 2x < 0 / y < 0, 1 + 2x > 0 / y = 0, 1 + 2x = 0 / y > 0, 1 + 2x > 0

(b) [1 point] The second derivative is $\frac{dy^2}{d^2x} =$

(i)
$$3y^2 \frac{dy}{dx} - 4y \frac{dy}{dx} - 3\frac{dy}{dx}$$

(ii) $3y + 4xy + 4x^2y$
(iii) $\frac{1}{3}x^3 - \frac{1}{2}x^2 + 5x + C$
(iv) $\frac{dy}{dx}(3y^2 - 4y - 3)$
(v) $(y - 3)(y - 1)(y + 2)(3y^2 - 4y - 3)$

2. [3 points] Use Euler's method to complete the following table which is used to approximate the value of y(1.5) where $y' = 2x^3 - 2y$ and y(1) = 3.

n	$x_n = x_0 + n \times dx$	$y_n = y_{n-1} + (2x_{n-1}^3 - 2y_{n-1})dx$
1	$x_1 = 1.1$	$y_1 = 2.6$
2	$x_2 = 1.2$	$y_2 = 2.3462$
3	$x_3 = 1.3$	$y_3 = ?$
4	$x_4 = 1.4$	$y_4 = ?$
5	$x_5 = 1.5$	$y_5 = ?$

- 1. Consider $\frac{dy}{dx} = y + 2xy$.
- (a) (i) y < 0, 1 + 2x < 0, (v) y > 0, 1 + 2x > 0positive slope when $\frac{dy}{dx} = y + 2xy = y(1 + 2x) > 0$
- (b) (ii) $3y + 4xy + 4x^2y$ $\frac{dy^2}{d^2x} = \frac{dy}{dx} + 2y(1) + 2x\frac{dy}{dx} = \frac{dy}{dx}(1+2x) + 2y = (y+2xy)(1+2x) + 2y = 3y + 4xy + 4x^2y$

2. Use Euler's method to complete the following table which is used to approximate the value of y(1.5) where $y' = 2x^3 - 2y$ and y(1) = 3.

n	$x_n = x_0 + n \times dx$	$y_n = y_{n-1} + (2x_{n-1}^3 - 2y_{n-1})dx$
1	$x_1 = 1.1$	$y_1 = 2.6$
2	$x_2 = 1.2$	$y_2 = 2.3462$
3	$x_3 = 1.3$	$y_3 = 2.2226$
4	$x_4 = 1.4$	$y_4 = 2.2174$
5	$x_5 = 1.5$	$y_5 = 2.3228$

- Set the calculator to difference equation (or "sequence graphing") mode by MODE, then arrowing down four and over four, to SEQ (ENTER).
- Continue to set the calculator to difference question mode by typing 2nd FORMAT, then arrowing over two, to uv (ENTER).
- Adjust the window dimensions for proper viewing, WINDOW 0, 5, 1, 1, 0.5, 2, 1, 2, 5, 1,
- To input the difference equations, type Y= nMin = 0, u(n) = 1 + 0.1n, $u(nMin) = \{1\},$ $v(n) = v(n-1) + 0.1(2u(n-1)^3 - 2v(n-1)),$ $v(nMin) = \{3\}$

Notice that n is the "X,T, θ ,n" button, that "u" is the "2nd 7" button and "v" is the "2nd 8" button on your calculator.