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Course Review Information

Mathematics 223

This course covers chapters 1 to 7 and 13, except 1.3, 6.3-6.6 and 7.4-7.6 in both my
lecture notes and the text. There are four main parts to this course. What they are
and where they are located in both the lecture notes and text are given below.

• Linear and Nonlinear Equations accounts for about 30% of course
and is found in chapters 1 and 2 (lecture notes 1, 2, 3 and 4).

• Derivatives accounts for about 35% of the course
and is found in chapter 3, 4 and 13 (lecture notes 5, 6, 7, 8 and 9).

• Identifying Absolute and Relative Extrema accounts for about 20% of the course
and is found in chapters 5 and 6 (lecture notes 10, 11 and 12).

• Integration accounts for about 15% of the course
and is found in chapters 7 and 13 (lecture notes 13 and 14).

Chapter 1. Linear Functions (lecture notes 1,2)

After discussing points and the Cartesian coordinate system, linear functions (lines)
are discussed. In particular, the slope of a line is,

m =
change in y

change in x
=

rise

run
=

∆y

∆x
=

y2 − y1

x2 − x1
, x1 6= x2.

Linear functions can take different forms:

• slope-intercept: y = mx+ b, slope m, y-intercept b

• point-slope form: y − y1 = m(x− x1), slope m, line passes through (x1, y1)

• general form: ax+ by = c, a, b, c integers with no common factor, x ≥ 0

• vertical line: x = k, x-intercept k, undefined slope

• horizontal line: y = k, y-intercept k, zero slope
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Lines are parallel if and only if slopes equal or all are vertical. Two lines are perpen-
dicular if and only if product of slopes are −1, m1 ·m2 = −1 (or m2 = − 1

m1
) or one

is vertical and the other is horizontal. Many real-world situations can be modeled by
linear functions.

We consider linear functions in this section, such as f(x) = 2x+4, where y = f(x)
is the dependent variable and x is the independent variable. All linear equations are
linear functions except equations of the form x = k where k is a constant (Since x = k

is vertical, the slope is undefined and so this equation cannot also be a function). We
look at how to solve two linear functions, to find their intersection, and, furthermore,
give applications of solving linear functions. In particular, we look at economic supply,
demand and equilibrium examples and also business cost and break-even analyses,
as well as a finite mathematics feasible regions example. We also notice there are
only three possible ways two lines can intersect: at one point, no point (inconsistent
solution) or infinite points (dependent, identity solution).

Chapter 2. Nonlinear Functions (lecture notes 3,4)

A function is a rule which assigns to each element in one set one and only element
from another set. A non linear function is not a straight line. A function be described
in different ways, such as using a set diagram, table or by equation. The domain is
the set of all possible values of the independent variable of a function x; the range is
the set of all possible values of the dependent variable of a function y = f(x). Two
special types of functions are discussed, including:

• even function: f(−x) = f(x), a function symmetric about the y-axis,

• odd function: f(−x) = −f(x), a function symmetric about the origin.

Step functions are also discussed.
A quadratic function is defined as:

f(x) = ax2 + bx+ c

where a, b, c are real, a 6= 0. The graph of a quadratic is always a parabola. The
maximum/minimum point (vertex) of quadratic/parabola is given at:

(h, k) =

(

− b

2a
, f

(

− b

2a

))

Increasing c moves (translates) parabola upwards; decreasing c translates parabola
downwards. Negative a flips (reflects) parabola downwards; positive a reflects parabola
upwards. Increasing magnitude of a increases steepness of parabola. Completing the
square of the quadratic, by factoring first two terms of quadratic then adding the
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square of one-half of the coefficient of x in the parentheses and subtracting outside,
gives

y = a(x− h)2 + k

where (h, k) is, again, the vertex of the parabola. For any function f and positive h

and k,

• y = f(x) + k is graph of f(x) translated upwards by k

• y = f(x)− k is graph of f(x) translated downwards by k

• y = f(x− h) is graph of f(x) translated right (not left!) by h

• y = f(x+ h) is graph of f(x) translated left by h

• y = −f(x) is graph of f(x) reflected upward down, vertically, across x-axis

• y = f(−x) is graph of f(x) reflected horizontally, across y-axis

A polynomial function of degree n is defined by

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

where leading coefficient an 6= 0, the ai are real numbers and n is a nonnegative inte-
ger. Linear and quadratic functions are polynomials of degree 1 and 2, respectively;
cubic and quartic polynomials are of degrees 3 and 4, respectively. Simple polynomials
of the form f(x) = xn are called power functions. Some properties of polynomials:

• polynomials of degree n have at most n−1 turning points (or relative extrema);
graphs of polynomials with n turning points are at least of degree n+ 1

• ends of a polynomial with even degree either both turn up or both turn down;
one end of a polynomial with odd degree turns up and other turns down

• graph goes up as x becomes a large positive number if leading coefficient posi-
tive; goes down if leading coefficient negative

A rational function is

f(x) =
p(x)

q(x)
,

where p(x) and q(x) are polynomials and q(x) 6= 0. Since

• if a function grows larger in magnitude as x approaches k, x = k is a vertical
asymptote,

• if a function approaches k as |x| gets larger, y = k is a horizontal asymptote,
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then if both numerator p(x) and denominator q(x) of a rational function are zero at
same x = k, graph has a hole (removable discontinuity) at k, but if only denominator
q(x) is zero at x = k, x = k is a vertical asymptote.

An exponential function is given by

f(x) = ax

where x is any real number, a > 0 and a 6= 1. If base a = e ≈ 2.718, the exponential
function becomes the (natural) exponential function, f(x) = ex. Related to this, as
m gets larger, (1 + 1

m
)m approaches e.

Exponential functions are used in financial formulas. If principal (present value)
amount P is invested at interest rate r per year over time t, simple interest, I, is
I = Prt. If P is invested at interest rate r per year, compounded m times per year
for t years, compound amount is

A = P

(

1 +
r

m

)mt

.

If interest rate r is compounded continuously, compound amount after t years is

A = Pert.

Logarithmic functions are related to exponential functions. Assume a > 0, a 6= 1
and x > 0

y = loga x if and only if ay = x (or ay − x = 0)

where “loga x” is read “logarithm of x to the base a”. If base a = e, the logarithmic
function becomes the (natural) logarithmic function, f(x) = loge x = ln x; if base
a = 10, the logarithmic function becomes the (common) logarithmic function, f(x) =
log10 x = log10 x. For any positive x, y and a, a 6= 1, and any real number r,

• loga xy = loga x+ loga y

• loga
(

x
y

)

= loga x− loga y

• loga x
r = r loga x

Also, loga a = 1, loga 1 = 0 and logra = r. The change-of-base theorem for logarithms

loga x =
logb x

logb a
=

lnx

ln a

and change-of-base theorem for exponentials is

ax = e(ln a)x

For y0 amount present at time t = 0, let amount present at time t be

y = y0e
kt.
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If k > 0, then k is a growth constant and y is an exponential growth function (used
in bacterial growth, for example); if k < 0, then k is a decay constant and y is an
exponential decay function (used in radioactive decay, for example). In addition to
this unbounded model, the limited growth model is given by

y = L− (L− y0)e
kt

where k < 0 and L is a limit to growth.
Also, effective rate for compound interest is

rE =
(

a+
r

m

)m

− 1

which becomes rE = er − 1 if interest is compounded continuously.

Chapter 3. The Derivative (lecture notes 5,6)

The limit L of function f(x) as x approaches (but does not equal) a (from both sides
of a) is written

lim
x→a

f(x) = L

where a and L are both real numbers and where values of f(x) approach (and perhaps
equal) L. The limit of L as x approaches a does not exist if

• as x approaches a from both sides, f(x) approaches either positive (denoted
limx→a f(x) = ∞) or negative infinity (denoted limx→a f(x) = −∞), or

• as x approaches a from one side, f(x) approaches positive infinity, but as x

approaches a from the other side f(x) approaches negative infinity or vis-versa,

• limx→a− f(x) = L and limx→a+ f(x) = M , where L 6= M

If a, A, B are real numbers, f and g are functions and

lim
x→a

f(x) = A, lim
x→a

g(x) = B,

then

1. If k is a constant, limx→a k = k and limx→a[k · f(x)] = k · limx→a f(x) = k · A

2. limx→a[f(x)± g(x)] = limx→a f(x)± limx→a g(x) = A± B

3. limx→a[f(x) · g(x)] = [limx→a f(x)] · [limx→a g(x)] = A · B

4. limx→a
f(x)
g(x)

= limx→a f(x)
limx→a g(x)

= A
B
, ifB 6= 0

5. If p(x) is a polynomial, then limx→a p(x) = p(a)
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6. For any real k, limx→a[f(x)]
k = [limx→a f(x)]

k = Ak, provided limit exists

7. limx→a f(x) = limx→a g(x) if f(x) = g(x) for all x 6= a

8. For any real number b > 0, limx→a b
f(x) = b[limx→a f(x)] = bA

9. For any real number b where 0 < b < 1 or b > 1,
limx→a[logb f(x)] = logb[limx→a f(x)] = logb A, if A > 0

Limits at infinity for f(x) = p(x)
q(x)

, q(x) 6= 0, such as limx→∞ f(x) and limx→−∞ f(x),
determined by

• dividing p(x) and q(x) by highest power of q(x) (not p(x)!)

• then, for positive real n, using

lim
x→∞

1

xn
= 0, lim

x→−∞

1

xn
= 0

where if x < 0, xn does not necessarily always exist (for example, for n = 1
2
)

and so limit also does not exist in these cases

Roughly speaking, a function is continuous if its graph can be drawn without
lifting the pencil from the paper. A function f(x) is continuous at x = c if

1. f(c) is defined,

2. limx→c f(x) exists,

3. limx→c f(x) = f(a).

If f(x) is not continuous, it is discontinuous. A function is continuous on an open
interval, (a, b), if it is continuous on every x in the interval; a function is continuous
on a closed interval, [a, b], if it is continuous

• on the open interval (a, b),

• from the right at x = a,

• from the left at x = b.

Polynomial and exponential functions are continuous for all x; rational functions,
f(x) = p(x)

q(x)
, are continuous for all x where q(x) > 0; logarithmic functions, f(x) =

loga x, a > 0, a 6= 1, are continuous for all x > 0; root functions, f(x) =
√
ax+ b,

ax+ b ≥ 0, are continuous for all x where ax+ b ≥ 0.
The average rate of change of f(x) with respect to x as x changes from a to b is

f(b)− f(a)

b− a
.
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The instantaneous rate of change of f(x) at x = a is

lim
h→0

f(a+ h)− f(a)

h
= lim

b→a

f(b)− f(a)

b− a
,

assuming limit exists and where f(a+h)−f(a)
h

and f(b)−f(a)
b−a

are different versions of the
difference quotient. These formulas serve as an intermediate step towards understand-
ing the derivative.

Two equivalent definitions of the derivative of f(x) at x are

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

b→x

f(b)− f(x)

b− x

if the limit exists, and where function f ′(x) is read “f-prime of x”. Function f ′(x)
is both the instantaneous rate of change of y = f(x) at x and also the slope of the
tangent line at x. The tangent line to graph of y = f(x) at point (x1, f(x1)) is

y − f(x1) = f ′(x1)(x− x1).

If f ′(x) exists, f(x) is differentiable and the steps which produce f ′(x) is called differ-
entiation. A function f is differentiable if all of the following conditions are satisfied,

• f is continuous,

• f is smooth,

• f does not have a vertical tangent line,

and nondifferentiable is any one of the following conditions are satisfied,

• f is discontinuous (there are “jumps”, “holes”, asymptotes in the function)
because a slope cannot be where there is nothing (points b, c and e in Figure);

• f is not smooth (there is “sharp corner” in the function) because there are
different conflicting slopes (but not one slope) at this point (point d in Figure);

• f has a vertical tangent line because the “run” is zero in the rise/run formula
for the slope which would make the slope undefined at this point (point a).

a b d ec

vertical 

tangent

limit does

not exist

(discontinuous:

jump)

function

not de!ned

(discontinuous: 

asymptote)

not smooth

function

not de!ned

(discontinuous: 

removable, “hole”)

Different types of nondifferentiability
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Some things to remember when drawing derivatives of functions graphical: identify
points of function where derivatives

• zero (“peaks and valleys” of a function); for example, at B and D in Figure,

• negative/positive (downward/upwarding sloping parts of a function); for exam-
ple, positive derivative in region between points A and B, negative in region
between points B and D in Figure,

• large (slope of function is either vertical or near-vertical) and also use previous
positive/negative information to designate large positive/negative derivative;
for example, large negative tangent at C gives minimum derivative in Figure
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Chapter 4. Calculating the Derivative (lecture

notes 7,8)

Various notations for the derivative of y = f(x) include

f ′(x),
dy

dx
,

d

dx
[f(x)] , Dx[f(x)].

Some rules for differentiation include:

• Constant rule. Derivative of a constant function, f(x) = k, k real, is zero:

f ′(x) = 0.

• Power rule. Derivative of f(x) = xn, n real, is

f ′(x) = nxn−1.
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• Constant times function rule. Derivative of f(x) = k · g(x), k real, g′(x) exists:

f ′(x) = kg′(x).

• Sum or difference rule. Derivative of f(x) = u(x)± v(x), and u′(x), v′(x) exist:

f ′(x) = u′(x)± v′(x).

Product rule: If f(x) = u(x) · v(x), u′(x) and v′(x) exist, then

f ′(x) = v(x) · u′(x) + u(x) · v′(x).

Quotient rule: If y = u(x)
v(x)

, u′(x) and v′(x) exist, and v(x) 6= 0, then

f ′(x) =
v(x) · u′(x)− u(x) · v′(x)

[v(x)]2
.

One possible composition of functions g and f is composed function g[f(x)] whose
values are given for all x in the domain of f such that f(x) is in the domain of g.
Roughly, composed function g[f(x)] takes“output” of f(x) and uses it as “input”
of function g(x), or that f(x) is the inner layer and g(x) is the outer layer and of
the function. The chain rule is used to find the derivative of the composed function
y = g[f(x)], where y = f(u) and u = g(x), and is given by,

dy

dx
=

dy

du
· du
dx

= f ′[g(x)] · g′(x)

The exponential e ≈ 2.71828... is defined as

lim
m→∞

(

1 +
1

m

)

.

The (natural) exponential function has the remarkable property it is its own derivative:

d

dx
ex = ex,

whereas the derivative of the exponential function ax, a 6= 1, is

d

dx
ax = (ln a)ax.

Derivative of (natural) logarithmic function is:

d

dx
ln |x| = 1

x
= x−1

whereas derivative of the logarithmic function is:

d

dx
[loga |x|] =

1

(ln a)x
= ((ln a)x)−1

.
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Chapter 5. Graphs and the Derivative (lecture

notes 10,11)

For any two values x1 and x2 in an interval,

f(x) is increasing iff(x1) < f(x2) if x1 < x2,

f(x) is decreasing iff(x1) > f(x2) if x1.

Derivatives can be used to determine whether a function is increasing, decreasing or
constant on an interval:

f(x) is increasing if derivative f ′(x) > 0,

f(x) is decreasing if derivative f ′(x) < 0,

f(x) is constant if derivative f ′(x) = 0.

A critical number, c, is one where f ′(c) = 0 or f ′(c) does not exist; a critical point
is (c, f(c)). After locating the critical number(s), choose test values in each interval
between these critical numbers, then calculate the derivatives at the test values to
decide whether the function is increasing or decreasing in each given interval. (In
general, identify values of the function which are discontinuous, so, in addition to
critical numbers, also watch for values of the function which are not defined, at
vertical asymptotes or singularities (“holes”).)

A relative (local) extremum (plural: extrema) ia defined as follows:

f(c) is relative (local) maximum if f(x) ≤ f(c), for all x in (a,b)

f(c) is relative (local) minimum if f(x) ≥ f(c), for all x in (a,b)

f(c) is relative (local) extrema if c is either a relative minimum or maximum at c.

If function f has a relative extremum at c, then c is either a critical number or an
endpoint. First derivative test for locating relative extrema in (a, b):

f(c) is relative maximum if f ′(x) positive in (a, c), negative in (c, b)

f(c) is relative minimum if f ′(x) negative in (a, c), positive in (c, b)

Although treated in a similar manner, allowances are made for identifying relative
extrema for functions with discontinuities.

Notation for higher derivatives of y = f(x) include

second derivative: f ′′(x), , d2y
dx2 , D2

x[f(x)],

third derivative: f ′′′(x), , d3y
dx3 , D3

x[f(x)],

fourth and above, nth, derivative: f (n)(x), , d(n)y
dx(n) , D(n)

x [f(x)].

Second derivative of function can be used to check for both concavity and points of
inflection of the graph of function.
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concave

down

f’’(x) < 0

concave

up 

f’’(x) > 0

x

y

point of

in!ection

minimum

maximum

Concave up, concave down and point of inflection

In particular, if function f has both derivatives f ′ and f ′′ for all x in (a, b), the

f(x) is concave up if f ′′(x) > 0, for all x in (a,b)

f(x) is concave down if f ′′(x) < 0, for all x in (a,b)

At an inflection point of function f , either f ′′(x) = 0 or second derivative does not
exist (although the reverse is not necessarily true). Second derivative test is used to
check for relative extrema. Let f ′′ exist on open interval containing c (except maybe
c itself) and let f ′(c) = 0, then

if f ′′(c) > 0 then f(c) is relative minimum

if f ′′(c) < 0 then f(c) is relative maximum

if f ′′(c) = 0 or f ′′(x) does not exist test gives no information, use first derivative test

We combine a number of previous ideas to sketch a graph of a function. First,
determine the following properties of the function:

1. domain, note restrictions
cannot divide by 0, or take square root of negative number, or take logarithm of 0 or of a negative number

2. y-intercept, x-intercept, if they exist
y-intercept: let x = 0 in f(x), x-intercept: solve f(x) = 0 for x

3. vertical, horizontal, oblique asymptotes
vertical asymptote when denominator 0, horizontal asymptote when x → ∞, or x → −∞

4. symmetry
symmetric about y-axis if f(−x) − f(x); symmetric about origin if f(−x) = −f(x)

5. first derivative test
note critical points (when f ′(x) = 0), relative extrema, in/decreasing sections of function
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6. points of inflection, intervals and concavity
note inflection points (when f ′′(x) = 0), concave up/down

Then, plot all points and connect them with a smooth curve, taking into account
asymptotes, concavity and in/decreasing sections of function. Check result with a
graphing calculator. Commonly recurring shapes are given in the figure; for example,
an increasing concave up function is given in upper left corner.

concave

down

f’’(x) < 0

concave

up 

f’’(x) > 0

increasing 

f’(x) > 0

decreasing 

f’(x) < 0

Some important function shapes

Chapter 6. Applications of the Derivative (lecture

notes 12)

Function f at c, f(c), in an interval has an

absolute maximum if f(x) ≤ f(c),

absolute minimum if f(x) ≥ f(c),

for all x in the interval. Technique for identifying absolute extrema depends on
whether the interval is open or closed. For closed intervals, the extreme value theorem
is used to identify absolute extrema. This theorem says a continuous function f

on a closed interval [a, b] will/must have both an absolute maximum and absolute
minimum. Consequently, in the closed interval case,

1. evaluate f all critical numbers in (a, b),

2. evaluate f at endpoints a and b of [a, b],

3. largest f is absolute maximum; smallest is absolute minimum.

If f is defined on an open interval (a, b), evaluate the limit of f as it approaches
the endpoints; there is no absolute extrema if the limit is ±∞. In the special case
when there is only one critical number c, the critical point theorem says for function
f defined on (either open or closed) interval I,

if f has relative minimum at x = c this relative minimum is an absolute minimum,

if f has relative maximum at x = c this relative maximum is an absolute maximum.
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Although treated in a similar manner, allowances are made for identifying absolute
extrema for functions with discontinuities. A related question of finding the maximum
of g(x) = f(x)

x
is given by finding x such that f ′(x) = f(x)

x
, in other words, finding the

x where slope of tangent, f ′(x) equals slope of line from origin to point x.
We apply the techniques used in absolute minima and maxima problems to a

number of applied topics. Steps to solving applied problems include:

• Determine function.
draw a picture to make things clear if possible

identify variable to maximize or minimize, express this variable as a function of one other variable

• Determine domain of function.
identify if open or closed interval

• Determine critical values and endpoints.

• Identify absolute extrema.
check results with calculator

Chapter 7. Integration (lecture notes 13)

• power rule
∫

xn dx = xn+1

n+1
+ C, n 6= −1

• constant multiple rule
∫

k · f(x) dx = k
∫

f(x) dx+ C

• sum or difference rule
∫

[f(x)± g(x)] dx =
∫

f(x) dx± ∫

g(x) dx

• exponential functions

1.
∫

ekx dx = ekx

k
+ C, k 6= 0

2.
∫

akx dx = akx

k(lna)
+ C, a > 0, a 6= 1

• ∫ 1
x
dx =

∫

x−1 dx =
∫ dx

x
= ln |x|+ C

Use boundary conditions to determine the constant of integration, C.
We look at an integration technique called substitution, which often simplifies

a complicated integration. Roughly, the substitution integration technique is the
reverse of the chain rule differentiation technique. We use the following formulas
as a basis for the substitution technique, after substituting u = f(x) (and so du =
f ′(x)dx).

• ∫

[f(x)]nf ′(x) dx becomes
∫

un du = un+1

n+1
+ C, n 6= 1

• ∫

ef(x)f ′(x) dx becomes
∫

eu du = eu + C
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• ∫ f ′(x)
f(x)

dx becomes
∫ 1

u
du =

∫

u−1 du = ln |u|+ C

Substitution method typically concerned with three cases; chose substitution u to be

• quantity under root or raised to a power

• quantity in denominator

• exponent of e

and allow for constants. We also look at how to deal with fractions in integration.
So far, we have looked at indefinite integrals; now, we turn to definite integrals. An
indefinite integral determines the area under a curve; a definite integral determines a
specific area under a curve between a lower bound a and an upper bound b.

x

f(x) f(x)

∆ x∆

a ab b

Approximating area with sum of rectangles

As shown in the figure, the area under the curve, between points a and b, can be
approximated by adding the area of n rectangles and this approximation improves
the greater the number of increasingly narrow rectangles. If f is defined on interval
[a, b] the definite integral is

∫ b

a
f(x) dx = lim

n→∞

n
∑

i=1

f(xi)∆x

where the limit exists, ∆x = b−a
n

and xi is (somewhere, possibly to the left or to
the right) in the ith interval. We look at different ways the rectangles are summed,
whether using the left endpoints or from the right endpoints or from the middle
endpoints or left and right total areas are averaged. In economic applications, the
definite integral is called total change.

Chapter 13. The Trigonometric Function (lecture

notes 9,14)

Consider an angle with origin (vertex) at the origin of the coordinate system and
two rays where the initial side ray is along the x-axis and terminal side ray is at
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the end of a rotation of angle θ. Acute, right, obtuse and straight angles occur when
0o < θ < 90o, θ = 90o, 90o < θ < 180o and θ = 180o respectively. For radius, r and
arc (length), s, of a circle, radian measure of θ is defined as s

r
; where, notice, if radius

of circle is one (1), a unit circle, radian measure equals arc length s. An angle can be
measured in either degrees or radians, where

1 radian =
180o

π
, 1o =

π

180
radians.

Let r be distance from origin to point (x, y) on terminal side ray. Then

sin θ =
y

r
csc θ =

r

y
, (y 6= 0)

cos θ =
x

r
sec θ =

r

x
, (x 6= 0)

tan θ =
y

x
, (x 6= 0) cot θ =

x

y
, (y 6= 0)

where notation t or x can be used instead of θ; for example, sin t or sin x could be
used instead of sin θ. Also, some trigonometric identities are:

csc θ =
1

sin θ
sec θ =

1

cos θ
cot θ =

1

tan θ

tan θ =
sin θ

cos θ
cot θ =

cos θ

sin θ
sin2 θ + cos2 θ = 1

Values for trigonometric functions are typically found using a calculator but some
values can be found for triangles with special angles given in the Figure. For example,
for 30o − 60o − 90o triangle, where 60o = 60 ·

(

π
180

)

= π
3
, so sin 60o = sin π

3
= y

r
=

√
3
2
.

x

y

60

o
(a) 30 - 60 - 90 triangle (b) 45 - 45 - 90 triangle
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Trigonometric functions and special angles

A trigonometric function is periodic because it is a function y = f(x) with real number
a such that f(x) = f(x+ a) for all x; smallest a, when the function repeats itself, is
the period of the function. Periods of both sin x and cosx are 2π; their amplitudes
(half their range (“height”) from -1 to 1) are both 1. Furthermore, constants a, b, c, d
transform graphs of both a sin(bx+ c)+ d and a cos(bx+ c)+ d in the following ways:
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• amplitude a increases (decreases) “height” of graph for |a| large (small)
when a < 0, graphs reflected in x-axis (“flipped”),

• constant b (assume b > 0) affects period;
for example, graph of y = sin(bx) looks like y = sin x but with period T = 2π

b

if 0 < b < 1, period completed more rapidly (shorter period) than when b = 1
if b > 1, period completed more slowly (longer period) than when b = 1

• horizontal shift c moves graphs left (c > 0) or right (c < 0)

• vertical shift d moves graphs up (d > 0) or down (d < 0)

Phase shift, c
b
, gives number of units sin bx or cos bx are shifted horizontally; for

example, if c = 2π, b = 1, then sin(x+ 2π) is c
b
= 2π

1
= 2π units left of sin x, whereas

if c = 2π, b = 2, then sin(2x+ 2π) is 2π
2
= π units left of sin 2x.

Trigonometric identities:

sin2 x+ cos2 x = 1, tan x =
sin x

cosx

Sum–difference identities

cos (x+ y) = cosx cos y − sin x sin y

cos (x− y) = cosx cos y + sin x sin y

sin (x+ y) = sin x cos y + cosx sin y

sin (x− y) = sin x cos y − cosx sin y

Derivatives of trigonometric functions include:

Dx [sin x] = cos x Dx [csc x] = − cot x csc x

Dx [cosx] = − sin x Dx [sec x] = tan x sec x

Dx [tan x] = sec2 x Dx [cotx] = − csc2 x

Integrals of trigonometric functions include:
∫

sin x dx = − cosx+ C

∫

cos x dx = sin x+ C
∫

sec2 x dx = tanx+ C

∫

csc2 x dx = − cot x+ C
∫

sec x tan x dx = sec x+ C

∫

csc x cot x dx = − csc x+ C
∫

tan x dx = − ln | cosx| + C

∫

cot x dx = ln | sin x|+ C



TI–84+ Instructions 17

Notes Chapter Topics Description
2 1 Graphing Functions Y = function, GRAPH, WINDOW, TRACE, Zoom
2 1 Graphical Intersection 2nd CALC, Intersection
2 1 Evaluating Functions Y = function, VAR Y–VAR ENTER ENTER (function) ENTER
4 2 Logarithm Function logBASE 2 X ENTER (f(x) = log2 x)
5 3 Numerical Limits Type 2nd TBLSET 1 1 Ask Auto, then 2nd TABLE 10 ENTER and so on
5 3 Piecewise Functions Type y = (−x)(X < 0) + (2)(x = 0) into Y1 =, use 2nd TEST
6 3 Numerical Differentiation MATH nDeriv( ENTER X ENTER (Function) ENTER (x value) ENTER
8 4 Graphical Differentiation GRAPH TRACE (x value) 2nd CALC dy/dx
9 13 Trigonometric Functions SIN, COS, TAN, MODE (either RADIAN or DEGREE)
13 7 Lists L1, . . . , L6

13 7 Summary Statistics STAT CALC 1–Var Stats L1

13 7 List of Differences 2nd LIST OPS 7:∆List)
13 7 Numerical Integration 2nd LIST OPS seq 3X, X, 0.05, 4.95, 0.1 ) STO 2nd L2 ENTER
13 7 More Numerical Integration 2nd LIST MATH sum ENTER 2nd L2 ) × 0.1 ENTER


